Contents

Foreword by James Jerger, PhD ix
Preface xi
Contributors xiii

SECTION I. IDENTIFICATION AND ASSESSMENT 1

1. Current Issues in the Diagnosis and Treatment of CAPD in Children
 Renata Filippini, Jeffrey Weihing, Gail D. Chermak, and Frank E. Musiek 3

2. Central Auditory Processing Disorders: Definition, Description, Behaviors, and Comorbidities
 Donna Geffner 37

3. Audiologic Assessment of CAPD
 Marni Johnson Martin, Cassandra R. Billiet, and Teri James Bellis 69

4. Deficit-Specific Diagnosis and Remediation of Auditory Processing Disorders
 Sharon Cameron and Harvey Dillon 95

 Nina Kraus and Spencer B. Smith 123

6. Auditory Processing in Individuals with Auditory Neuropathy
 Gary Rance 155

7. The Speech-Language Pathologist’s Role in the Assessment of Auditory Processing Skills
 Deborah Ross-Swain 181

8. Language Processing versus Auditory Processing
 Gail J. Richard 215
9. APDs and Literacy
 Martha S. Burns

10. Neuropsychological Evaluations: Differentiating Between Auditory Processing and Related Complexities
 Daniel B. Peters and Michelle L. Freeman

11. Neurological Brain Damage and Its Impact on Auditory Processing
 Doris-Eva Bamiou and Cristina F. B. Murphy

12. Auditory Processing in Mental Health
 Vasiliki (Vivian) Maria Iliadou

13. Otitis Media and Central Auditory Processing Disorder (CAPD)
 Jack Katz, Thomas R. Zalewski, and Michael J. Brenner

SECTION II. MANAGEMENT

14. The ABCs of CAP: Practical Strategies for Enhancing Central Auditory Processing and Related Skills
 Jeanane M. Ferre

15. Management Strategies with FM Systems and Assistive Listening Devices
 Donna Geffner

SECTION III. EVIDENCE-BASED TREATMENT AND INTERVENTION PROGRAMS

16. Phonemic Awareness, Reading Abilities, and Auditory Processing Disorders
 Jay R. Lucker

17. Applicable Applications: Treatment and Technology with Practical, Efficient, and Affordable Solutions
 Bunnie Schuler

18. Application of Neuroscience to Remediation of Auditory Processing, Attention, Phonological, Attentional, Language, and Reading Disorders: The Fast ForWord® Programs
 Martha S. Burns
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>CAPD Online Therapy System (CAPDOTSTM)</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Carol A. Lau</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Dichotic Interaural Intensity Difference (DIID) Training</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>Jeffrey Weihing and Frank E. Musiek</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Central Auditory Processing Disorders and the Disabled</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Child’s Right to Benefits of Public Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lina Foltz</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Reimbursement for Central Auditory Processing Disorder</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td>Janet P. McCarty</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Resources and Helpful Websites</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>Lindsay Lerro</td>
<td></td>
</tr>
<tr>
<td>Appendix A.</td>
<td>Auditory Processing Disorder (APD): Tips for Parents</td>
<td>567</td>
</tr>
<tr>
<td></td>
<td>Donna Geffner and Deborah Ross-Swain</td>
<td></td>
</tr>
<tr>
<td>Appendix B.</td>
<td>Auditory Processing Disorder: Tips for Teachers</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>Donna Geffner and Deborah Ross-Swain</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>585</td>
</tr>
</tbody>
</table>
The concept of auditory processing disorder has had a long and complicated history. Although it has recently been strongly associated with children, its roots go back to research on adults with brain tumors. In the 1950s, a group of Italian otolaryngologists, Ettore Bocca and his colleagues, were interested in the effect of temporal lobe tumors on speech perception. In those days it was accepted wisdom that hemispheric lesions had little or no effect on speech understanding; indeed, it was often said that you could do without an entire hemisphere without affecting speech understanding. Neurologists, of course, were well aware of the effects of even small brain lesions on language processing, especially Wernicke’s aphasia, but short of that the link to simple speech recognition tests was not commonly made. But Bocca and his team thought the matter had not been adequately studied. They set out to research the issue until they had a definitive answer. They began by testing these brain tumor patients with the Italian word lists used for standard audiometry, but could find no real deficits. They had the feeling, however, that the tests were too easy. They reasoned that if the tests could be made more difficult, something would turn up. One of the things they tried, in order to in their words “sensitize” the tests, was time compression. Lacking present-day digital recording techniques, they had the talker who was recording the materials simply talk faster. They tried lists of single words, whole sentences, voice distortion, systematic interruption, low pass filtering, and simply presenting the test items at a level only 5 dB above threshold (faint speech). They described all of this collectively as “low redundancy” speech. From all of this research they learned two things very clearly. First, when you made the test items more difficult by any of these “sensitization” schemes, there was a clear loss in speech understanding, and performance was poorer on the ear contralateral to the hemisphere affected by the tumor, striking testimony to the prepotency of the crossed over pathways between the ears and the cerebral hemispheres. Moreover, ear differences were often striking. Second, simply low-pass filtering the speech worked as well as any of the other, more complicated, techniques.

These Italian studies were read with great interest by many American audiologists, who saw it as a solution to the problem of how to test for auditory processing problems in children. The notion of a “central” auditory processing problem had been in the wind since Helmer Myklebust introduced the term in his 1954 book, *Auditory Disorders in Children*. A number of American audiologists were well aware of the fact that teachers and mothers often complained that there were children who simply did not “hear well,” even though formal audiometric testing seldom revealed any deficit. Perhaps, audiologists thought, the answer lay in making the audiometric tests more difficult, “sensitizing” them. If persons with known
brain lesions perform poorly on some kind of auditory test, and someone else performs poorly on that same test, but who does not have a hearing loss, a child then could be diagnosed with a “central auditory processing problem.”

A number of audiologists applied the sensitization idea to tests designed specifically for such children. One of the earliest tests for children, SCAN-C, for example, relied heavily on a low-pass filtered component. An individual child’s performance on the test could be described as abnormal if it fell outside the 95% confidence interval generated by a suitable normative group. Since these pioneering works, testing for auditory processing disorder has become something of a cottage industry.

Fortunately, while some disagreements remain, this book reminds us that we have long ago moved beyond such simplistic views of an auditory processing disorder. We have made significant progress over the past 50 years in understanding the complex interactions among speech, language, child development, and cognitive development. We have a better understanding of the need for more comprehensive testing over many dimensions. And we appreciate the importance of a team effort including many other disciplines besides audiology. We have a broader grasp of how to understand, address, and remediate the problems presented by children who need special help. And such a broad comprehensive view warrants an equally comprehensive textbook.

The editors of this volume have assembled an impressive team of individual contributors, each a respected authority in a specific area. Together they cover virtually every dimension of auditory processing disorder (APD), from modern diagnosis, through access technologies, to remote microphone technology, to educational and clinical management of APD. Each chapter has been assigned to an experienced and authoritative author or team of authors. Coverage is broad, thorough, and complete. This will be an excellent textbook for a course in APD as well as a resource for clinicians and researchers.

Naturally everyone approaches a book differently depending on their particular interest. I was especially impressed by Chapter 2 in which Donna Geffner clearly lays out the field of battle, Chapter 4, in which Sharon Cameron and Harvey Dillon present an extraordinarily innovative approach to diagnosis, Chapter 7 where Deborah Swain outlines the speech-language pathologist’s important role in the equation, and Chapter 8, Gail Richard’s contrast of auditory and language problems. Also, do not miss Chapter 11. Doris Bamiou’s chapter on neurological brain damage, and Chapter 5, by Nina Kraus and Spencer Smith, “Thinking Outside the Sound Booth.”

Well, these chapters happened to square most with my own interests, but there is something in this book for anyone touched in any way by the unique problems these children and adults present.

James Jerger, PhD
August 2017
Preface

The first edition of *Auditory Processing Disorders: Assessment, Management, and Treatment* was first published in 2007 with the second edition following in 2013. The concept of auditory processing disorder (APD) was introduced to our professions in 1954 by Helmer Mylebust. Since that time technology and instrumentation have enabled the professions to make tremendous advances in the neurophysiology, neuroanatomy, definition, assessment, management, and treatment of APD. However, since its inception and the years in between, this topic of research and study has been thwarted with controversy despite the magnitude of advances.

This third edition represents the tireless ongoing study, research, and clinical application by the best minds in the field of APD throughout the world. Their contributions document not only the existence of APD but the advances in assessment, management, and treatment in children and adults who are faced with the challenges imposed by the disorder. Ultimately, because of the contributions of such experts as Nina Kraus, Charles Berlin, Jack Katz, Teri James Bellis, Gail Chermak, Harvey Dillon, Sharron Cameron, Frank Musiek, Jeanne Ferre, Gary Rance, Jeff Weihing, Gail Richards, Margaret Burns, Vivian Iliadou, Doris Bamiou, Jay Lucker, Carol Lai, Janet McCarty, Bunnie Schuler, Dan Peters, and many more associate authors—a Who’s Who among authors, clinicians are better able to make enlightened decisions and recommendations for assessment, management, and treatment, resulting in better outcomes for the clients.

Though perspectives and opinions relative to APD continue to be controversial among the professional community, the advances, as presented in this third edition, speak for themselves. This third edition offers a more comprehensive and thorough reflection of the study of APD with some new authors, research, and clinical findings, as well as new discoveries, further documentation to an already established and definitive discipline. One merely has to look at the voluminous body of work dedicated to the science to realize its existence.

This third edition, like the previous two, is divided into three sections: Identification, Management, and Evidence-Based Treatment and Intervention Programs. Written by audiologists, speech-language pathologists, and third-party subject matter experts, the content of this book is intended to provide a variety of professionals with useful and practical information that will improve their understanding of APD relative to assessment, interpretation, management, and intervention. With a heightened knowledge base, we are all better able to serve the children, their parents, and adults with this disorder and foster collaboration with other professionals who interact with this population, promoting interprofessional collaboration.

The authors are indebted to the contributing authors who worked tirelessly and expediently to produce this third edition of *Auditory Processing*
Disorders: Assessment, Management, and Treatment. Their knowledge, expertise, and clinical practice have been compiled from around the world to advance this field of study, as well as provide the most current and relevant information for clinical application. We thank our contributors for their commitment and dedication to this field of study. A special thank you to Lindsay Lerro for her superb assistance. Their contributions are invaluable in advancing the knowledge base, and more importantly, in improving clinical outcomes for those individuals whose lives are impacted by APD.

Donna Geffner
Deborah Ross-Swain
Contributors

Doris-Eva Bamiou, MD, MSc, PhD, FRCP
Associate Professor
UCL Ear Institute
University College London Hospitals
London, United Kingdom
Chapter 11

Teri James Bellis, PhD, CCC-A, FAAA, F-ASHA
Professor and Chair
Department of Communication Sciences and Disorders
Director, USD Speech-Language-Hearing Clinics
The University of South Dakota
Vermillion, South Dakota
Chapter 3

Cassandra R. Billiet, AuD, CCC-A, FAAA
Clinical Audiologist
Oakdale Ear, Nose, and Throat Clinic
Minneapolis, Minnesota
Chapter 3

Michael J. Brenner, MD, FACS
Associate Professor of Otolaryngology—Head and Neck Surgery
Kresge Hearing Research Institute
University of Michigan
Ann Arbor, Michigan
Chapter 13

Martha S. Burns, PhD
Director of Neuroscience Education
Scientific Learning Corporation
Adjunct Associate Professor
Northwestern University

Evanston, Illinois
Chapters 9, 18

Sharon Cameron, PhD
Senior Research Scientist
National Acoustic Laboratories
Sydney, Australia
Chapter 4

Gail D. Chermak, PhD
Professor and Chair
Department of Speech and Hearing Sciences
Elson S. Floyd College of Medicine
Washington State University Health Sciences
Spokane, Washington
Chapter 1

Harvey Dillon, PhD
Director
National Acoustic Laboratories
Adjunct Professor
Macquarie University
Sydney, Australia
Chapter 4

Jeanane M. Ferre, PhD, CCC-A
Audiologist
Central Auditory Evaluation and Treatment
Adjunct Faculty, Northwestern University
Adjunct Faculty, Rush University
Oak Park, Illinois
Chapter 14

Renata Filippini, PhD
Post Doctoral Fellow
School of Medicine
University of Sao Paulo
Sao Paulo, Brazil
Chapter 1

Lina Foltz, Esq.
Law Office of Lina Foltz
Oakland, California
Chapter 21

Michelle L. Freeman, PsyD
Neuropsychologist
Assessment Director
Summit Center
Executive Director
Neuropsychological Evaluation Center, Inc.
Walnut Creek, California
Chapter 10

Donna Geffner, PhD, CCC-SLP/A
BA Brooklyn College CUNY
MA New York University—NYC
PhD New York University—NYC
EdD (Honorary) Providence College—RI
Donna Geffner and Associates
Roslyn, New York
Chapters 2, 15, Appendix A, Appendix B

Vasiliki (Vivian) Maria Iliadou, MD, PhD
Associate Professor
ENT Physician
Medical School
Neuroscience Division
Aristotle University of Thessaloniki
Thessaloniki, Greece
Chapter 12

Jack Katz, PhD
Professor Emeritus
University of New York at Buffalo
Research Professor

University of Kansas Medical Center
Director, Auditory Processing Service
Kansas City, Missouri
Chapter 13

Nina Kraus, PhD
Professor
Auditory Neuroscience Laboratory
Department of Communication Sciences and Disorders
Institute for Neuroscience
Department of Neurobiology and Physiology
Department of Otolaryngology
Northwestern University
Evanston, Illinois
Chapter 5

Carol A. Lau, MA (AuD)
Principal and Developer, CAPDOTS
Principal, Sound idEARS Hearing and Listening Clinic
Vancouver, Canada
Chapter 19

Lindsay Lerro, PhD
Program Director
The Swain Center and The Listening Center
Adjunct Faculty
Disability Specialist
Santa Rosa Junior College
Santa Rosa, California
Chapter 23

Jay R. Lucker, EdD, CCC-A/SLP, FAAA
Professor
Department of Communication Sciences and Disorders
Howard University
Washington, DC
Chapter 16
CONTRIBUTORS

Marni Johnson Martin, AuD, CCC-A, FAAA
Associate Professor, Audiology
Audiology Clinical Coordinator
University of South Dakota
Vermillion, South Dakota
Chapter 3

Janet P. McCarty, MEd, CCC-SLP
Director of Private Health Plan Reimbursement
American Speech-Language-Hearing Association
Rockville, Maryland
Chapter 22

Cristina F. B. Murphy, PhD
Research Associate
UCL Ear Institute
University College London
London, United Kingdom
Chapter 11

Frank E. Musiek, PhD
Professor
Speech, Language, and Hearing Sciences
University of Arizona
Tucson, Arizona
Chapters 1, 20

Daniel B. Peters, PhD
Licensed Psychologist
Co-Founder and Executive Director, Summit Center
Co-Founder, Parent Footprint
Walnut Creek, California
Chapter 10

Gary Rance, BeD, DipAud, MSc, PhD, FaudSa
Associate Professor
Head of Academic Programs
Department of Audiology and Speech Pathology
The University of Melbourne
Melbourne, Australia
Chapter 6

Gail J. Richard, PhD, CCC-SLP
Professor Emeritus
Director of Autism Center
Eastern Illinois University
Charleston, Illinois
Chapter 8

Deborah Ross-Swain, EdD, CCC-SLP
BA—Speech Pathology and Audiology, California State University, Sacramento
MA—Speech Pathology, California State University, Sacramento
EdD Education, University of LaVerne
Founder and CEO, The Swain Center for Listening, Communicating, and Learning
Santa Rosa, California
Chapter 7, Appendix A, Appendix B

Bunnie Schuler, MA, CCC-SLP, TSSLd
Speech-language Pathologist
Private Practice, NYC
New York, New York
Chapter 17

Spencer B. Smith, PhD, AuD
Postdoctoral Fellow
Department of Communication Sciences and Disorders
Northwestern University
Evanston, Illinois
Chapter 5
Thinking Outside the Sound Booth: Assessing and Managing Auditory Processing Disorder in an Auditory-Cognitive Neuroscience Framework

Nina Kraus and Spencer B. Smith

Overview

Auditory processing disorder (APD) has traditionally been viewed within a site-of-lesion framework in which deficits are hypothesized to arise from impaired function of one or more specialized subunits of the auditory nervous system. This view is useful when examining patients with frank neurologic insults; however, in most cases of APD, no specific lesion can be found. In this chapter, we propose an auditory-cognitive neuroscience framework of auditory processing in which the “canonical” auditory pathway interfaces with cognitive, sensorimotor, and reward brain centers. Importantly, plasticity within this system can have adaptive or maladaptive consequences: auditory enrichment (e.g., musicianship or bilingualism) augments auditory-cognitive function while auditory deprivation (e.g., auditory-based learning disorders, poverty, or head injury) weakens it. Using a biomarker of auditory-cognitive function,
the frequency following response (FFR), we explore how both auditory expertise and disorder influence brain function. We conclude by offering suggestions for conducting auditory processing evaluations with the auditory-cognitive neuroscience framework in mind and review literature on remediation of auditory-based deficits using auditory training and FM systems.

Introduction

Professional and public awareness of auditory processing disorder (APD) has increased dramatically over the past two decades due to the collective efforts of expert task forces convened by the American Speech-Language-Hearing Association (ASHA) (2005a, 2005b), American Academy of Audiology (AAA) (2010), and British Society of Audiology (BSA) (2011). Greater awareness, however, has not translated into greater clarity or clinician confidence regarding the etiology, diagnosis, and management of APD, and the disorder remains controversial. A survey of the APD literature suggests that this controversy arises in part from inadequate theoretical frameworks through which APD can be understood and empirically investigated (Cacace & McFarland, 2009, 2013; DeBonis & Moncrieff, 2008; Moore, 2006). For example, many clinical tools used to assess APD were developed by testing patients with frank neurological lesions, such as individuals with war-related head injuries, temporal lobe seizures/defects, and corpus callosolectomies (Chermak & Musiek, 2013; Jerger, 2009). This site-of-lesion framework has been valuable in pinpointing areas of the brain involved in constituent aspects of auditory processing. However, in most cases of APD, a punctate site-of-lesion cannot be identified and the etiology may arise from a more diffuse combination of auditory and cognitive dysfunction (Bishop, Carleyon, Deeks, & Bishop, 1999; Hendler, Squires, & Emmerich, 1990; Jerger, Johnson & Loiselle, 1988; Moore, Ferguson, Edmondson-Jones, Ratib, & Riley, 2010; Moore, Rosen, Bamiou, Campbell, & Sirimanna 2013; Rappaport et al., 1994; Watson & Kidd, 2002).

Audition and cognition are tightly and reciprocally coupled; therefore, our view is that auditory-cognitive neuroscience can teach us a great deal about the nature of APD and how to remediate it (Banai & Kraus, 2007; Kraus & White-Schwoch, 2015; Moore et al., 2013; Musiek & Chermak, 2013; White-Schwoch & Kraus, 2017). We view the auditory-cognitive system as a distributed but integrated circuit in which the “canonical” auditory pathway provides a flexible scaffold that is shaped by cognitive interaction with sound over the lifespan. Importantly, the propensity of the auditory-cognitive system to learn can have adaptive or maladaptive consequences: auditory enrichment augments its function while auditory deprivation weakens it (Figure 5–1). Cases of both auditory expertise (e.g., musicianship) and disorder (e.g., auditory-based learning
problems) provide insights into how different experiences mold auditory-cognitive system function and allow us to understand the nature of disorders as well as how training can positively impact the brain (White-Schwoch & Kraus, 2017). While an auditory-cognitive framework of APD may seem more abstract than a site-of-lesion framework to clinicians “in the trenches,” it places diagnostic and remediation emphasis on deficits of *function* rather than *feature*. Therefore, the auditory-cognitive framework is very much in the spirit of recommendations from the abovementioned taskforces on APD in guiding “the development of more customized, *deficit-focused* intervention plans” (ASHA, 2005a).

We begin this chapter by exploring the neural substrates of the auditory-cognitive system and discuss how neuroplasticity inherent to this system facilitates auditory learning. We then review how adaptive and maladaptive auditory learning across the lifespan have been evaluated in our lab using a combination of objective (i.e., electrophysiological) and subjective (i.e., behavioral) assessments. The chapter concludes with a proposed outline for APD evaluation that is guided by assessing the auditory-cognitive system holistically.

Figure 5–1. The auditory-cognitive system is shaped by adaptive or maladaptive learning over the lifespan. Adaptive learning supports expert listening, whereas maladaptive learning may underlie various disorders resulting in poor listening.
and some discussion of evidence-based interventions.

Learning and Plasticity in the Auditory-Cognitive System

Classic models of auditory processing posited that information proceeded sequentially through specialized stations of the auditory system with computational analysis becoming more complex at each ascending level (e.g., Webster, 1992). This view has been eroded to the point of near collapse by the preponderance of evidence demonstrating that the auditory system is bidirectional, highly interactive, and diffusely influenced by experience (Atiani, Elhilali, David, Fritz, & Shamma, 2009; Bajo, Nodal, Moore, & King, 2010; Bajo & King, 2012; Dragicevic et al., 2015; Fritz, Elhilali, David, & Shamma, 2007; Gao & Suga, 2000; Kraus & White-Schwoch, 2015; Leon Elgueda, Silva, Hamamé, & Delano, 2012; Mulders & Robertson, 2000; Ota, Oliver, & Dolan, 2004; Polley, Steinberg, & Merzenich, 2006; Rajan, 1990; Zhang & Dolan, 2006; Xiao & Suga, 2002).

Extensive afferent and efferent auditory pathways provide the neural scaffold for auditory learning to occur within a circuit from cochlea to cortex and back (see Celesia & Hickok, 2015 for an anatomical review). Perhaps some of the most compelling data on efferent modulatory effects on the afferent auditory system come from experiments in which auditory cortex or brainstem neurons were deactivated (either pharmacologically or temporarily via cryoloop cooling) or electrically stimulated in animal models. For example, cochlear outer hair cell and auditory nerve fiber function were modulated with activation or deactivation of the efferent system “upstream” in both the auditory brainstem and cortex (Dragicevic et al., 2015; Leon et al., 2012; Mulders & Robertson, 2000; Rajan, 1990; Ota et al., 2004; Zhang & Dolan, 2006). Further, the characteristic frequency of stimulated neurons in the auditory cortex (Xiao & Suga, 2002) and brainstem (Mulders & Robertson, 2000) corresponded with the frequency of maximum outer hair cell and auditory nerve fiber modulation. Such effects are demonstrative of the degree to which top-down influences can extend to the most peripheral sites in the auditory system to shape how sound is processed.

Importantly, afferent and efferent auditory pathways not only interact with each other but with cognitive, sensorimotor, and reward centers in the brain (Figure 5–2; Kraus & White-Schwoch, 2015); this combination is a potent force both for online modulation of auditory function and neural remodeling (Atiani et al., 2009; Bakin & Weinberger, 1996; Bidelman, Schug, Jennings, & Bhagat, 2014; Bidelman & Howell, 2016; Bidelman, Schneider, Heitzmann, & Bhagat, 2017; Chandrasekaran, Hornickel, Skoe, Nicol, & Kraus, 2014; Kilgard & Merzenich, 1998; Kraus & White-Schwoch, 2015; Perrot & Collet, 2014; Smith & Cone, 2015; Zatorre, Chen, & Penhune, 2007; Wittekindt, Kaiser, & Abel, 2014). While classic studies of auditory learning demonstrated that cortical sound representation could be altered by behavioral conditioning (Galambos, Sheatz, & Verrier, 1955), research from the intermediate years has demonstrated that, as long as the efferent auditory system is intact, learning can occur even in the auditory subcortex (e.g., Bajo et al., 2010; Gao & Suga, 2000). Further, performance improvements associated with auditory
learning persist long after the cortical shifts facilitating these changes have disappeared (Reed et al., 2011), suggesting that although the cortex is important for initiating auditory learning by linking sound to meaning, the subcortex may act as a primary repository in which those meaningful relationships are stored and automatically activated (Atiani et al., 2009; Fritz et al., 2005; Kilgard, 2012).

Assessing Learning and Plasticity in the Human Auditory System

The primary approach that we have used to understand the human auditory-cognitive system and the effects of adaptive and maladaptive auditory learning is a neurobiological measure of brain function known as the frequency following response (FFR).¹ The FFR (Figure 5–3) is a sound-evoked electrical potential recorded from the scalp that is mainly generated by the inferior colliculus (Chandrasekeran & Kraus, 2012; Krishnan, 2002; Smith, Marsh, & Brown, 1975; Smith, Marsh, Greenberg, & Brown, 1978; Sohmer, Pratt, & Kinarti, 1977; but also see Coffey, Herholz, Chopesiuk, Baillet, & Zatorre, 2016). Unlike other auditory evoked potentials, the FFR physically resembles the evoking stimulus; it therefore captures the brain’s representation of a multitude of speech (e.g.,

¹The FFR has also been referred to by our lab and others as the “auditory brainstem response to complex sound” or cABR.
voice pitch, harmonics, vowel formants, and consonant identities), music (e.g., pitch, timbre, attack, and consonance/dissonance), and other complex stimulus features. Further, FFRs can be assessed with regard to their stability and similarity to the input stimulus to discern the integrity, reproducibility, and quality of neural processing (see Skoe & Kraus, 2010 for an in-depth tutorial). Because the FFR is tightly coupled to a major convergence hub of multisensory afferent and efferent information in the inferior colliculus (Winer, 2006), it provides an extremely sensitive measure to study auditory learning due to both lifelong and short-term training experiences (Chandrasekaran, Skoe, & Kraus, 2014).

Adaptive Learning through Auditory Enrichment

Auditory enrichment contributes to greater neurobiological and cognitive function (Arnon et al., 2006; Engineer et al., 2004; Huttenlocher, 2009; Norena & Eggermont, 2005; Webb, Heller, Benson, & Lahav, 2015; White-Schwoch & Kraus, 2017). In our work, we have investigated the neural effects of auditory enrichment in musicians and bilinguals using the FFR (e.g., Krizman et al., Marian, Shook, Skoe, & Kraus, 2012; Skoe, Marian, & Kraus, 2014; Musacchia, Sams, Skoe, & Kraus, 2007; Strait, Parbery-Clark, Hittner, & Kraus, 2012; Wong, Skoe, Russo, Dees, & Kraus, 2007). In both instances, the auditory-cognitive system is more efficient at automatically processing specific aspects of sound through experience-related tuning of attention; the specific features that are accentuated through these types of enrichment, however, differ.

Musicianship

The effects of musical training on the brain are profound. In comparison to nonmusicians, lifelong musicians show

Figure 5–3. The FFR is a scalp recorded neural potential in which the brain’s response (bottom waveform) mimics the input stimulus (top waveform) with precision. The FFR can be analyzed in myriad ways to extract how well the brain represents various aspects of sound.