Cleft Palate
Speech and Resonance

An Audio and Video Resource
Contents

Preface vii
Acknowledgments x
Reviewers xi
List of Abbreviations xiii
Legend to Audio and Video Samples xv

1 Resonance and Speech Problems 1

Introduction 2
A Note on Terminology 3
Overview of the Velopharyngeal Mechanism 4
Communication Problems Associated With Cleft Palate 10
Articulation 18
Phonatory Disorders 34
Hearing 35
Language 35
Coexisting Communication Problems 36
Summary 37

2 Speech Assessment 39

Introduction 39
Issues With Service Provision 40
Assessment 41
Perceptual Assessment 44
Analysis of the Speech Sample 48
Categorization of Errors 49
Coexisting Speech Disorders 53
Speech Understandability, Acceptability, and Stimulability 55
Suprasegmental Features 56
Speech and Hearing Mechanism Variables 57
Cognitive-Linguistic Variables, Receptive Language, Expressive Language, and Academic Achievement 60
Documenting Speech Findings 61
Summary 61
3 Auditory-Visual-Perceptual Analysis of Speech Samples

- Introduction: 73
- Description of Procedures for Collecting and Rating Speech Samples:
 - Section 1. Speech Features Commonly Associated With Cleft Palate and Velopharyngeal Dysfunction: 83
 - Section 2. Audio Case Studies: Guided Practice: 96
 - Section 3. Audio Case Studies: Independent Practice: 121
 - Section 4. Video Case Studies: Independent Practice: 144

4 Treatment

- Introduction: 173
- Approach to Treatment: 174
- General Treatment Concepts: 175
- Treating Toddlers With Cleft Palate: 178
- Supplemental Treatment Techniques to Provide Feedback: 182
- Treating the Speech Sound Disorders of Older Patients: 184
- Additional Treatment Concerns: 192
- A Technology for Treatment: 194
- Summary: 201

5 Referring to a Cleft Palate–Craniofacial Team

- Introduction: 203
- Overview of a Cleft Palate Team: 204
- Why Refer to a Cleft Palate Team?: 205
- The Referral Process: 208
- Guidelines for Referring to a Cleft Palate Team: 209
- After the Referral Is Made: What Can the SLP Expect From the Team?: 215
- Summary: 216

Appendix A Audio Case Studies: Analysis of Speech and Treatment Recommendations: 219

Appendix B Video Case Studies: Analysis of Speech and Treatment Recommendations: 257

References: 299

Index: 311
Preface

Cleft Palate Speech and Resonance: An Audio and Video Resource was developed to be a companion to the textbook, *Evaluation and Management of Cleft Lip and Palate: A Developmental Perspective* (Zajac & Vallino, 2017). It can also serve as a standalone text to facilitate learning about speech disorders associated with cleft palate (CP) and other problems of resonance in speakers without a cleft condition.

The original intent was to edit a series of digital audio and video samples for speech-language pathologists (SLPs) to use in becoming familiar with the speech, resonance, and phonatory characteristics of individuals with CP. That is, we wanted to create a clinical tool that would assist students and SLPs in developing their auditory perceptual identification skills. However, our discussions and literature searches over the past 2 years altered our thinking. The most pressing issue was that patients1 with CP constitute a low-incidence population, and many clinicians have limited academic exposure and/or clinical training in this area, a shortcoming that many recognize. The result is that their knowledge base and clinical skills are limited. Grames (2008) provides an excellent discussion of the history of care of the individual with cleft palate in the United States, and she also identifies current issues that limit academic and clinical opportunities for students. Survey data collected by the American Speech-Language-Hearing Association (2012) and corroborated by others indicate that one of the significant challenges facing SLPs in the schools is the lack of education and training in low-incidence populations such as cleft palate (Bedwinek, 2007; Vallino, Lass, Bunnell, & Pannbacker, 2008).

The paradigm shift in our thinking resulted in the preparation of this *Resource*. The issues that currently prevail led us to alter our thinking in terms of developing a useful educational product for students and

1In this *Resource*, we use the word patient rather than client to refer to the speakers in the audio and video samples as they have all been managed by our respective hospital-based interdisciplinary teams. We acknowledge that community-based SLPs and those working in academic settings use the term client to refer to those individuals to whom they provide speech and language services.
clinicians. Rather than present a series of audio and video recordings that would only address a skill area, we decided to develop a publication that would address both knowledge and skill areas. While there are several excellent publications in the management of cleft lip and palate, we reasoned that both students and SLPs would benefit from a publication that focuses on cleft-related speech disorders with the opportunity to hear, see, and assess these disorders as well. The goals of this publication are to improve the knowledge base and clinical skills of students and SLPs by presenting current and evidence-based information and a range of auditory-perceptual experiences that will help them to identify the different speech, resonance, and phonatory problems associated in speakers with CP. It will also enable them to apply these concepts to care for the individual with cleft palate and interact with caregivers and cleft palate teams. Students and SLPs need easy access to information and materials, which explicitly deal with the particular communication disorder and are state of the art (Kuster, 2010). This is very important in cleft care, since assessment and treatment concepts have changed significantly over the past 25 years.

This Resource offers material for those who need such information and features a series of audio- and video-recorded speech samples and case studies that the student and practicing clinician can use to develop perceptual identification skills to assess patients with cleft palate and resonance disorders and also those with noncleft-related velopharyngeal dysfunction. The audio and video samples can be accessed on the PluralPlus companion website. For instructors, it can provide much-needed teaching materials that are necessary in the classroom, particularly where access to this population is limited. Practicing SLPs can also use it to retool their skills. Last, it can also be a great resource for dental and medical students, and residents who are learning about cleft palate.

The first chapter provides an overview of the velopharyngeal mechanism, followed by descriptions of resonance, articulation, and phonatory characteristics of speakers who have cleft palate. Hearing and other potential coexisting communication problems are also discussed. Chapter 2 focuses on a systematic assessment of communication problems associated with cleft palate. Chapter 3 provides an array of audio- and video-recorded speech samples and case examples illustrating a variety of speech problems associated with cleft palate, some of which may seem to be straightforward and others more complex. Here, the SLP will have an opportunity for independent practice in listening and analyzing these speech samples and to make recommendations for treatment, and
to compare their analyses with ours provided in Appendices A and B. Because there are a variety of cases in which speech therapy is recommended, Chapter 4 describes treatment strategies to correct speech errors that are amenable to therapy. Chapter 5 offers a guide for referring a patient to a cleft palate team. Each chapter begins with a list of key terms relevant to the material presented.

Linda D. Vallino
Dennis M. Ruscello
David J. Zajac
Acknowledgments

I would like to express my gratitude to the many people who saw me through this book. These wonderful people provided support and encouragement, talked things over, read (and reread) drafts, offered comments and great suggestions, and made me laugh.

To Denny and David, you are the best! I cherish our longtime and unconditional friendship, and admire your scholarly contributions in the area of cleft palate—I always learn something from you.

I would like to thank the children and their families and the young adults who graciously agreed to be a part of this text. All of them told me that if they can help students and new SLPs learn about cleft palate, then they wanted to have a part in it! And they did. Thank you Cindy Brodoway and Brad Gelman for masterfully videorecording many of the sessions. Cindy, the cover of this book is filled with your fantastic photographs of some very special people. I am most appreciative of your time and talent.

Thanks to Kalie Koscielak and everyone else at Plural Publishing for supporting this idea and for your patience throughout the process, and to all the reviewers who took the time to review the draft of this Resource. Your thoughtful comments were positive, constructive, and beneficial.

Last, I am able to do what I truly enjoy because of the love and support of my family. Nicholas, Caroline, John, and Eleanor are four extraordinary children who have grown up to be four extraordinary adults. Then there is my adoring husband, Joe, who is always at the heart of my adventures. You’re awesome!

Linda D. Vallino
Wilmington,
Delaware
Reviewers

Plural Publishing, Inc. and the authors would like to thank the following reviewers for taking the time to provide their valuable feedback during the development process:

Anne Bedwinek, PhD, CCC-SLP
Adjunct Associate Professor
Department of Communication Sciences & Disorders
The University of Missouri
Columbia, Missouri

Kate Bunton, PhD, CCC-SLP
Associate Professor
Speech, Language, and Hearing Sciences
University of Arizona
Tucson, Arizona

Dana R. Collins, PhD, CCC-SLP
Associate Professor
Department of Communication Sciences and Disorders
University of Minnesota Duluth
Duluth, Minnesota

John Wm. Folkins, PhD
Professor
Department of Communication Sciences and Disorders
Bowling Green State University
Bowling Green, Ohio

Nancy Gauvin, EdD, CCC-SLP
Clinical Assistant Professor

Department of Communication Sciences and Disorders
University of Vermont
Burlington, Vermont

Jennifer M. Glassman, PhD, CCC-SLP, CHES
Assistant Professor
Speech-Language Pathology
University of Toledo
Toledo, Ohio

Carol L. Koch, EdD, CCC-SLP
Associate Professor
Communication Sciences and Disorders
Samford University
Birmingham, Alabama

Brenda Louw, DPhil, SLP
Professor and Chair
Department Audiology and Speech-Language Pathology
East Tennessee State University
Johnson City, Tennessee

Jayanti Ray, PhD, CCC-SLP
Professor
Communication Disorders
Southeast Missouri State University
Cape Girardeau, Missouri
Gale B. Rice, PhD, CCC-SLP
Dean, College of Education and Allied Health Professions
Fontbonne University
Speech-Language Pathologist,
Craniofacial Anomalies Team
The University of Missouri
Columbia, Missouri

Jeff Searl, PhD, CCC-SLP
Associate Professor

Natalie R. Wombacher, MS, CCC-SLP
Department of Communicative Sciences and Disorders
Michigan State University
East Lansing, Michigan
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPA</td>
<td>American Cleft Palate-Craniofacial Association</td>
</tr>
<tr>
<td>ANE</td>
<td>Audible nasal emission</td>
</tr>
<tr>
<td>ANF</td>
<td>Anterior nasal fricative</td>
</tr>
<tr>
<td>ASHA</td>
<td>American Speech-Language-Hearing Association</td>
</tr>
<tr>
<td>CLP</td>
<td>Cleft lip and palate</td>
</tr>
<tr>
<td>EMT</td>
<td>Enhanced Milieu Training</td>
</tr>
<tr>
<td>EMT/PE</td>
<td>Enhanced Milieu Training with Phonological Emphasis</td>
</tr>
<tr>
<td>ENT</td>
<td>Ear, Nose, and Throat</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability Accountability Act</td>
</tr>
<tr>
<td>KR</td>
<td>Knowledge of Results</td>
</tr>
<tr>
<td>MADO</td>
<td>Maxillary advancement using distraction osteogenesis</td>
</tr>
<tr>
<td>NA</td>
<td>None apparent</td>
</tr>
<tr>
<td>NE</td>
<td>Nasal emission</td>
</tr>
<tr>
<td>NF1</td>
<td>Neurofibromatosis, type 1</td>
</tr>
<tr>
<td>NSOME</td>
<td>Nonspeech oral motor exercises</td>
</tr>
<tr>
<td>NT</td>
<td>Nasal turbulence</td>
</tr>
<tr>
<td>OME</td>
<td>Otitis media with effusion</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive sleep apnea</td>
</tr>
<tr>
<td>PE</td>
<td>Pressure-equalization</td>
</tr>
<tr>
<td>PNF</td>
<td>Posterior nasal fricative</td>
</tr>
<tr>
<td>PSNE</td>
<td>Phoneme-specific nasal emission</td>
</tr>
<tr>
<td>SLP</td>
<td>Speech-language pathologist</td>
</tr>
<tr>
<td>SNHL</td>
<td>Sensorineural hearing loss</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>T&A</td>
<td>Tonsillectomy & adenoidectomy</td>
</tr>
<tr>
<td>VP</td>
<td>Velopharyngeal</td>
</tr>
<tr>
<td>VPD</td>
<td>Velopharyngeal dysfunction</td>
</tr>
<tr>
<td>VPI</td>
<td>Velopharyngeal inadequacy</td>
</tr>
<tr>
<td>WFL</td>
<td>Within functional limits</td>
</tr>
<tr>
<td>WNL</td>
<td>Within normal limits</td>
</tr>
</tbody>
</table>
Legend to Audio and Video Samples

Chapter 3
Section 1
Speech Features Commonly Associated With Cleft Palate and Velopharyngeal Dysfunction

Resonance
Audio 3.1.1 Normal nasal resonance
Audio 3.1.2 Slight hypernasality but within functional limits
Audio 3.1.3 Mild hypernasality
Audio 3.1.4 Mild-moderate hypernasality
Audio 3.1.5 Moderate hypernasality
Audio 3.1.6 Moderate hypernasality, oral distortions
Audio 3.1.7 Severe hypernasality
Audio 3.1.8 Mild hyponasality
Audio 3.1.9 Mild-moderate hyponasality
Audio 3.1.10 Mixed hyper-hyponasality

Nasal Air Emission
Audio 3.1.11 Audible nasal air emission (ANE)
Audio 3.1.12 ANE on /s/ and /z/ segments
Audio 3.1.13 ANE
Audio 3.1.14 ANE
Audio 3.1.15 Nasal turbulence

Articulation Errors Within the Oral Cavity

Obligatory (Adaptive) Oral Distortions
Audio 3.1.16 Anterior sibilant and affricate distortions
Audio 3.1.17 Interdental /s/
Audio 3.1.18 Interdental /s/
Audio 3.1.19 Fronting on fricatives and affricates
Audio 3.1.20 Dentalized /s/
Audio 3.1.21 Lateral /s/ distortions
Audio 3.1.22 Palatalized stop during production of /t/ (Note: We acknowledge that others have considered this as a compensatory misarticulation, and as discussed in the text it is best characterized in some cases as an obligatory oral distortion.
Audio 3.1.23 Dentalized alveolar and palatal sounds
Articulation Errors Outside the Oral Cavity

Compensatory (Maladaptive) Articulation
Audio 3.1.24 Glottal stops
Audio 3.1.25 Glottal stops
Audio 3.1.26 Pharyngeal fricatives
Audio 3.1.27 Pharyngeal fricatives
Audio 3.1.28 Pharyngeal stops
Audio 3.1.29 Pharyngeal stops
Audio 3.1.30 Pharyngeal affricates
Audio 3.1.31 Pharyngeal affricates

Other Unusual Articulations
Audio 3.1.32 Nasal fricative
Audio 3.1.33 Nasal fricative
Audio 3.1.34 Nasal fricative
Audio 3.1.35 Posterior nasal fricative
Audio 3.1.36 Posterior nasal fricative
Audio 3.1.37 Illustration of separate oral and nasal signals of nasal fricative (with spectrogram)
Audio 3.1.38 Illustration of separate oral stops and frication with flutter

Phonatory Disorders
Audio 3.1.39 Mild hoarseness
Audio 3.1.40 Moderate hoarseness
Audio 3.1.41 Moderate hoarseness
Audio 3.1.42 Hoarse and strained voice quality

Section 2
Audio Case Studies: Guided Practice
Audio 3.2.1 20-year-old male with repaired left unilateral cleft lip and palate with normal resonance and phonation
Audio 3.2.2 15-year-old male with repaired right unilateral cleft lip and palate with mixed hyper-hyponasality and lateral distortions
Audio 3.2.3 9-year-old female with repaired right unilateral cleft lip and palate with resonance within functional limits, lateral/palatal distortions, and mild vocal hoarseness
Audio 3.2.4 7-year-old male with repaired cleft palate with normal resonance with slight oral distortions on sibilants, and hoarse/strained voice quality
Audio 3.2.5 8-year-old male with repaired bilateral cleft lip and palate and pharyngeal flap with resonance within functional limits and lateral-palatalized distortions
<table>
<thead>
<tr>
<th>Audio Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio 3.2.6</td>
<td>9-year old female with hypernasality following tonsillectomy and adenoidectomy</td>
</tr>
<tr>
<td>Audio 3.2.7</td>
<td>15-year-old male with Pierre Robin sequence and repaired cleft palate with hypernasality, and generalized backing of alveolar sounds</td>
</tr>
<tr>
<td>Audio 3.2.8</td>
<td>7-year-old female with repaired left unilateral cleft lip and bifid uvula and posterior nasal turbulence</td>
</tr>
<tr>
<td>Audio 3.2.9</td>
<td>15-year-old female with left unilateral cleft lip and palate with moderate hypernasality, audible nasal emission, and anterior nasal frication on sibilants</td>
</tr>
<tr>
<td>Audio 3.2.10</td>
<td>9-year-old boy with right hemifacial macrosomia with posterior nasal fricatives</td>
</tr>
<tr>
<td>Audio 3.2.11</td>
<td>8-year-old female with submucous cleft palate with mild hypernasality, audible nasal air emission, interdentalized sibilants, an unusual gr/w substitution.</td>
</tr>
<tr>
<td>Audio 3.2.12</td>
<td>8-year-old female who underwent surgery for oral tumor that included removal of portions of the soft and hard palate that were repaired. She has very mild hypernasal speech and normal articulation with hard glottal attacks on counting from 80 to 90.</td>
</tr>
<tr>
<td>Audio 3.2.13</td>
<td>13-year-old female with a profound, rising to mild mixed hearing loss with moderate hypernasality</td>
</tr>
<tr>
<td>Audio 3.2.14</td>
<td>19-year-old female with muscular dystrophy and flaccid dysarthria with moderate hypernasality, and imprecise articulation</td>
</tr>
<tr>
<td>Audio 3.2.15</td>
<td>12-year-old female without a visible cleft lip or palate with hypernasal speech following tonsillectomy and adenoidectomy</td>
</tr>
<tr>
<td>Audio 3.2.16</td>
<td>6-year-old male with repaired right unilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, and reduced loudness. He also produced /s/ on inspiration.</td>
</tr>
<tr>
<td>Audio 3.2.17</td>
<td>14-year-old male with repaired bilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, weak pressure consonants, and oral distortions</td>
</tr>
<tr>
<td>Audio 3.2.18</td>
<td>6-year-old male with a complete cleft palate with moderate hypernasality and compensatory articulation errors</td>
</tr>
<tr>
<td>Audio 3.2.19</td>
<td>3.5-year-old male with repaired left unilateral cleft lip and palate with mild hypernasality, audible nasal air emission, high pitch, and developmental errors</td>
</tr>
<tr>
<td>Audio 3.2.20</td>
<td>4-year-old male with repaired left unilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, and stopping errors</td>
</tr>
</tbody>
</table>
Section 3
Audio Case Studies: Independent Practice

Audio 3.3.1 20-year-old male with repaired bilateral cleft lip and palate with normal resonance
Audio 3.3.2 12-year-old male with repaired left cleft lip and palate with slight hyponasality and lateral distortions
Audio 3.3.3 7-year-old male with repaired bilateral cleft lip and palate with mild to moderate hypernasality, and lateralization of the alveolar and palatal fricatives and affricates
Audio 3.3.4 9-year-old male with Stickler syndrome with mild to moderate hypernasality
Audio 3.3.5 11-year-old female with 22q11.2 deletion syndrome with mild hypernasality, mild hoarseness, and speech sound errors
Audio 3.3.6 11-year-old male with a repaired left unilateral cleft lip and palate with mild hypernasality, intermittent audible nasal air emission, and normal articulation
Audio 3.3.7 4-year-old female without cleft palate with posterior nasal fricatives characterized by nasal turbulence for affricates.
Audio 3.3.8 15-year-old male with popliteal pterygium syndrome and repaired cleft palate with moderate hypernasality, audible nasal air emission, glottal stops, and palatal fricatives and affricates
Audio 3.3.9 17-year-old female with repaired right unilateral cleft lip and palate after maxillary advancement. She has mild hypernasality and intermittent audible nasal air emission.
Audio 3.3.10 6-year-old with repaired bilateral cleft lip and palate with moderate hypernasality, intermittent audible nasal air emission, and compensatory articulation errors
Audio 3.3.11 18-year-old young adult with repaired left unilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, and weak pressure consonants
Audio 3.3.12 8-year-old female with Stickler syndrome and repaired isolated cleft palate with moderate hypernasality and audible turbulence
Audio 3.3.13 13-year-old male with Klippel-Feil syndrome and repaired left unilateral cleft lip and palate with hyponasality, fronting of alveolar and palatal sounds, and other articulation errors
Audio 3.3.14 7-year-old male with repaired bilateral cleft lip and palate with moderate hypernasality and lateralization of sibilants
Audio 3.3.15 7-year-old female with neurofibromatosis with severe hypernasality, imprecise articulation, and pitch variations
Legend to Audio and Video Samples

Audio 3.3.16 Almost 4-year-old male with repaired left unilateral cleft lip and palate with moderate hypernasality, nasal fricatives, glottal stops, sound deletions, and severe hoarseness

Audio 3.3.17 6-year-old female with submucous cleft palate with moderate hypernasality, nasal fricative, /r/ distortion, and mild hoarseness

Audio 3.3.18 3-year-old male with repaired right unilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, compensatory articulation errors, and developmental speech errors

Audio 3.3.19 9-year-old male with repaired right unilateral cleft lip and palate with moderate hypernasality, compensatory articulation errors including glottal stops, pharyngeal fricatives, and pharyngeal affricates

Audio 3.3.20 This is the same patient presented in Audio 3.3.19 one year after push-back revision palatoplasty with buccal flaps to improve VPD. He has normal resonance and persistent compensatory errors.

Section 4

Video Case Studies: Independent Practice

Video 3.4.1 2-year-old female with isolated cleft palate with normal resonance and age-appropriate articulation development.

Video 3.4.2 6-year-old male with isolated cleft palate with essentially normal resonance albeit a slight hint of hyponasality on nasal consonants, and developmental articulation errors unrelated to cleft palate.

Video 3.4.3 14-year-old female with left unilateral cleft lip and palate with resonance that is within functional limits during citation but demonstrates an increase in hypernasality during conversational speech. Her videoasenoendoscopic assessment is also shown.

Video 3.4.4 6-year-old male with right unilateral cleft lip and palate with mild hypernasality, facial grimace, and oral distortions.

Video 3.4.5 11-year-old male with bilateral cleft lip and palate with mild hypernasal speech, audible nasal air emission, nasal grimace, obligatory oral distortions, and hoarse voice quality.

Video 3.4.6 18-year-old female with left unilateral cleft lip and palate with moderate hypernasal speech, audible nasal air emission, and nasal grimace. She is shown again after surgery to improve speech and resonance.

Video 3.4.7 11-year-old male without cleft palate with mild-moderate hypernasality, and nasal turbulence.
Video 3.4.8 Almost 15-year-old male with Crouzon syndrome with mild hyponasality and oral distortions.

Video 3.4.9 6-year-old female with neurofibromatosis type 1 (NF1) presenting with a motor speech disorder including severe hypernasality, imprecise articulation, and abnormal pitch variations. Her videonasoendoscopic assessment is also shown. Note left carotid artery pulsation.

Video 3.4.10 8-year-old female with submucous cleft palate with hypernasality and interdental /s/.

Video 3.4.11 8-year-old female with submucous cleft palate and nasal fricatives. Her videonasoendoscopic assessment is also shown.

Video 3.4.12 Almost 8-year-old male with bilateral cleft lip and palate with moderate hypernasality, mild nasal grimace, palatalized sibilants, and tip alveolar stop consonants.

Video 3.4.13 Almost 7-year-old male with repaired submucous cleft palate with mild hypernasality, pharyngeal fricatives, and glottal stops.

Video 3.4.14 3-year-old male with repaired right unilateral cleft lip and palate with mild hypernasality, audible nasal air emission, and hoarse voice quality.

Video 3.4.15 5-year-old male with left unilateral cleft lip and palate with moderate hypernasality, audible nasal air emission, and developmental and obligatory articulation errors. His videonasoendoscopic assessment is also shown.

Video 3.4.16 3.5-year-old male with left unilateral cleft lip and palate with coexisting articulation errors, nasal grimace, and moderate-severe hoarse voice quality. He is shown again at 14 years of age, presenting with normal resonance and slight /r/ and oral distortions.

Video 3.4.17 10-year-old female with Pierre Robin sequence and cleft palate before and after insertion of a speech appliance to improve resonance.

Video 3.4.18 8-year-old male with a cleft of the secondary palate before and after surgery to correct velopharyngeal dysfunction. His videonasoendoscopic assessment is also shown.

Video 3.4.19 8-year-old female with ectodermal dysplasia as part of Bartsocas Papas syndrome and bilateral cleft palate before and after surgery to correct velopharyngeal dysfunction.

Chapter 4

Video 4.1 Example of a child with pharyngeal fricatives and affricates who acquired correct production of /s/ and /tf/ in treatment.
We dedicate this publication to our families who have always supported us in our academic and clinical endeavors. In addition, we acknowledge and dedicate this work to Drs. Betty Jane McWilliams, Betty Jane Philips, and Ralph Shelton, who are pioneers in cleft care and whose work inspired us to embark upon this project. Finally, this is dedicated to all of those who were born with a cleft condition and benefited from the services of cleft palate–craniofacial teams and different community care specialists.
Resonance and Speech Problems

Key Terms

- Backed Alveolar Consonants
- Clicks
- Compensatory (Maladaptive) Articulation Errors
- Conductive Hearing Loss
- Cul-de-sac Resonance
- Fricatives on Inspiration
- Glottal Stops
- Hypernasality
- Hyponasality
- Malocclusion
 - Dental Malocclusion
 - Skeletal Malocclusion
 - Open Bite
 - Crossbite
- Mixed Hyper-Hyponasality
- Nasal Air Emission
 - Visible
 - Audible
 - Turbulent
- Nasal Fricatives
 - Anterior
 - Posterior
- Nasal Grimace
There are three ways that the speech-language pathologist (SLP) studies speech production, and these are physiologic, acoustic, and perceptual (see Chapter 2). Each study method is important in understanding normal and disordered speech production, because of the different information that each provides. However, the decisive test for a person with a communication disorder(s) is the perceptual impact of the problem. What is the impression of a person with a communication disorder that other speakers form when engaging with them in verbal communication? This is particularly important for speakers with cleft palate because they may present with problems that affect different speech production subsystems. Thus, the ear is the most important clinical tool for the SLP who must develop a perceptual frame of reference for the different speech disorders that may be present in a speaker with cleft palate. That is, one must listen and be able to iden-
tify the feature(s) of the communication disorder in a reliable manner and formulate appropriate diagnostic and treatment plans. We must note, however, that some speech characteristics associated with cleft palate are difficult to reliably identify with the ear alone. Palatalized stops (or mid-dorsum palatal stops), for example, are quite difficult even for experienced SLPs to identify (Santelmann, Sussman, & Chapman, 1999). Likewise, although most can easily recognize the distinctive sound of a learned nasal fricative, a similar or even identical sound can occur as an obligatory consequence of velopharyngeal dysfunction (VPD). In these cases, the use of objective instrumentation is essential to make appropriate diagnostic and management plans. We provide examples in Chapter 3 to illustrate the use of acoustic analysis to confirm perceptual identification of nasal fricatives.

We begin this chapter with an overview of the velopharyngeal valving mechanism for speech. This is followed by a description of the types of speech problems associated with cleft palate and other problems of VPD, including resonance, nasal air emission, articulation, and phonation. Other important considerations, including hearing problems and other potential coexisting speech problems unrelated to the cleft, will be discussed.

A Note on Terminology

In describing problems of velopharyngeal closure, there is often confusion about terminology usage. Throughout this Resource, the term velopharyngeal dysfunction (VPD) is used to refer to a problem of velopharyngeal closure. Velopharyngeal inadequacy (VPI) is a synonymous term that also denotes abnormal velopharyngeal function (Folkins, 1988). It is important to emphasize that both terms are generic and that neither one specifies a cause of the problem.

There are, however, terms used to describe impaired velopharyngeal function based on anatomical or physiologic referents. Velopharyngeal insufficiency (anatomic) is used to denote impaired velopharyngeal function that occurs as
a result of insufficient tissue to accomplish velopharyngeal closure. *Velopharyngeal incompetence* (physiologic) denotes a neurologic etiology that results in impaired motor control of the velopharyngeal mechanism.

Because we are relying on perceptual judgments about the adequacy of speech and not using instrumentation to identify the structural or neurological processes causing impaired velopharyngeal function (Folkins, 1988), the term *VPD* used in this text to refer to problems of velopharyngeal closure is appropriate.

Overview of the Velopharyngeal Mechanism

The complexity of the velopharyngeal (VP) mechanism is well recognized and appreciated, the details of which are beyond the scope of this *Resource*. The aim of this section is to provide the SLP with an overview of the VP mechanism during the production of speech. For the interested reader, comprehensive descriptions of VP anatomy and function can be found in texts such as Zemlin (1998); Peterson-Falzone, Hardin-Jones, and Karnell (2010); and Zajac and Vallino (2017).

Anatomy

The palate is made up of the hard palate anteriorly and the soft palate posteriorly (Figure 1–1). The hard palate is the bony structure that forms the roof of the mouth and floor of the nasal cavity. The soft palate or velum extends beyond the hard palate and is continuous with the uvula, the pedunculated structure at the end of the velum.

The velopharyngeal mechanism is composed of the velum, lateral pharyngeal walls, and the posterior pharyngeal wall (back wall of the throat). The space surrounded by these structures is referred to as the velopharyngeal port (Figure 1–2).

There are five muscle pairs of the velum and pharynx that are involved in velopharyngeal movement. They are the
1. Resonance and Speech Problems

The levator veli palatini, palatoglossus, musculus uvulus, palatopharyngeus, and tensor veli palatini (Figure 1-3).

The levator veli palatini is the primary muscle responsible for elevating and retracting the velum. The palatoglossus muscle is antagonistic to the levator muscle, and when contracted, it lowers the velum during speech and also acts to elevate the tongue during bolus preparation and transport. The musculus uvulus adds bulk to the velum and may stiffen to provide firm contact to the posterior pharyngeal wall. The horizontal fibers of the palatopharyngeus muscle provide sphincter action to orient the lateral pharyngeal walls medially, and its vertical fibers may lower the velum and elevate the pharynx/larynx during deglutition. The muscle responsible for medial displacement of the lateral pharyngeal walls is the
superior constrictor. The tensor veli palatini muscle is also often included as a muscle involved in velopharyngeal movement. However, the primary purpose of this muscle is to open or dilate the eustachian tubes (Dickson & Maue-Dickson, 1982; Rood & Doyle, 1978).