PRECLINICAL SPEECH SCIENCE
Anatomy, Physiology, Acoustics, Perception
SECOND EDITION

Thomas J. Hixon
Gary Weismer
Jeannette D. Hoit

Contents

ACKNOWLEDGMENTS xvii

1 INTRODUCTION 1
Focus of the Book 1
Domain of Preclinical Speech Science 1
Levels of Observation 1
Subsystems of Speech Production and Swallowing 3
Applications of Data 4
Review 4

2 BREATHING AND SPEECH PRODUCTION 7
Introduction 9
Fundamentals of Breathing 9
Anatomical Bases of Breathing 9
Skeletal Superstructure 9
Breathing Apparatus and Its Subdivisions 10
Forces and Movements of Breathing 13
Forces of Breathing 13
Realization of Active and Passive Forces 20
Movements of Breathing 20
Adjustments of the Breathing Apparatus 24
Pulmonary Apparatus 24
Chest Wall 24
Pulmonary Apparatus-Chest Wall Unit 25
Output Variables of Breathing 27
Volume 27
Pressure 28
Shape 31
Neural Control of Breathing 33
Neural Substrates 33
Control of Tidal Breathing 34
Control of Special Acts of Breathing 35
Ventilation and Gas Exchange During Tidal Breathing 36
Breathing and Speech Production 38
Breathing in Extended Steady Utterances 38
Breathing in Running Speech Activities 43
Adaptive Control of Speech Breathing 47
Body Position and Speech Breathing 47
Extended Steady Utterances in the Supine Body Position 48
Running Speech Activities in the Supine Body Position 50
Speech Breathing in Other Body Positions 52
Ventilation, Gas Exchange, and Speech Breathing 53
Drive to Breathe and Speech Breathing 53
Cognitive-Linguistic Factors and Speech Breathing 55
Conversational Interchange and Speech Breathing 56
Body Type and Speech Breathing 57
Development and Speech Breathing 57
Age and Speech Breathing 59
Sex and Speech Breathing 59
Measurement of Breathing 59
Volume Measurement 59
Pressure Measurement 62
Shape Measurement 63
Speech Breathing Disorders 63
Clinical Professionals and Speech Breathing Disorders 64
Review 65
References 68

3 LARYNGEAL FUNCTION AND SPEECH PRODUCTION 73
Introduction 74
Fundamentals of Laryngeal Function 75
Anatomy of the Laryngeal Apparatus 75
Skeleton 75
Laryngeal Joints 80
Internal Topography 83
Forces and Movements of the Laryngeal Apparatus 88
Forces of the Laryngeal Apparatus 88
Movements of the Laryngeal Apparatus 96
Adjustments of the Laryngeal Apparatus 97
Abduction of the Vocal Folds 97
Adduction of the Vocal Folds 98
Changing the Length of the Vocal Folds 99
Changing the Position and/or Configuration of the Ventricular Folds 101
Changing the Position and/or Configuration of the Epiglottis 101
Changing the Position of the Laryngeal Housing 101
Control Variables of Laryngeal Function 102
Laryngeal Opposing Pressure 102
Laryngeal Airway Resistance 103
Glottal Size and Configuration 104
Stiffness of the Vocal Folds 105
Effective Mass of the Vocal Folds 106
Neural Substrates of Laryngeal Control 107
Laryngeal Functions 109
Degree of Coupling Between the Trachea and Pharynx 109
Protection of the Pulmonary Airways 109
Containment of the Pulmonary Air Supply 109
Sound Generation 109
Laryngeal Function in Speech Production 109
Transient Utterances 109
Sustained Utterances 111
Sex and Velopharyngeal-Nasal Function in Speech Production 194
Measurement of Velopharyngeal-Nasal Function 196
Direct Visualization 196
X-Ray Imaging 196
Aeromechanical Observations 197
Acoustic Observations 198
Velopharyngeal-Nasal Disorders and Speech Production 200
Clinical Professionals and Velopharyngeal-Nasal Disorders in Speech Production 202
Review 204
References 207

5 PHARYNGEAL-ORAL FUNCTION AND SPEECH PRODUCTION 213
Introduction 215
Fundamentals of Pharyngeal-Oral Function 215
Anatomy of the Pharyngeal-Oral Apparatus 215
Skeleton 215
Temporomandibular Joints 218
Temporomandibular Joint Movements 218
Internal Topography 220
Forces and Movements of the Pharyngeal-Oral Apparatus 222
Forces of the Pharyngeal-Oral Apparatus 222
Movements of the Pharyngeal-Oral Apparatus 234
Adjustments of the Pharyngeal-Oral Apparatus 235
Adjustments of the Pharynx 235
Adjustments of the Mandible 235
Adjustments of the Tongue 236
Adjustments of the Lips 237
Control Variables of Pharyngeal-Oral Function 237
Pharyngeal-Oral Lumen Size and Configuration 237
Pharyngeal-Oral Structural Contact Pressure 239
Pharyngeal-Oral Airway Resistance 239
Pharyngeal-Oral Acoustic Impedance 240
Neural Substrates of Pharyngeal-Oral Control 241
Pharyngeal-Oral Functions 242
Degree of Coupling Between the Oral Cavity and Atmosphere 242
Chewing 243
Swallowing 243
Sound Generation and Filtering 243
Pharyngeal-Oral Function in Speech Production 243
The Speech Production Code 243
Vowel-Coding Scheme 244
Diphthong-Coding Scheme 245
Consonant-Coding Scheme 245
The Speech Production Stream 247
A Primer on Theories of Speech Production 248
Traditional Theory of Feature Spreading 249
Articulatory Phonology or Gesture Theory 252
Development and Pharyngeal-Oral Function in Speech Production 254
Age and Pharyngeal-Oral Function in Speech Production 256
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex and Pharyngeal-Oral Function in Speech Production</td>
<td>259</td>
</tr>
<tr>
<td>Measurement of Pharyngeal-Oral Function</td>
<td></td>
</tr>
<tr>
<td>X-Ray Imaging</td>
<td>260</td>
</tr>
<tr>
<td>Strain-Gauge Monitoring</td>
<td>261</td>
</tr>
<tr>
<td>Articulatory Tracking</td>
<td>261</td>
</tr>
<tr>
<td>X-Ray Microbeam Imaging</td>
<td>261</td>
</tr>
<tr>
<td>Electromagnetic Sensing</td>
<td>262</td>
</tr>
<tr>
<td>Optoelectronic Tracking</td>
<td>263</td>
</tr>
<tr>
<td>Electropalatographic Monitoring</td>
<td>263</td>
</tr>
<tr>
<td>Magnetic Resonance Imaging</td>
<td>264</td>
</tr>
<tr>
<td>Ultrasonic Imaging</td>
<td>264</td>
</tr>
<tr>
<td>Aeromechanical Observations</td>
<td>266</td>
</tr>
<tr>
<td>Acoustic Observations</td>
<td>266</td>
</tr>
<tr>
<td>Pharyngeal-Oral Disorders and Speech Production</td>
<td>267</td>
</tr>
<tr>
<td>Clinical Professionals and Pharyngeal-Oral Disorders in Speech Production</td>
<td>269</td>
</tr>
<tr>
<td>Reviews</td>
<td>270</td>
</tr>
<tr>
<td>References</td>
<td>274</td>
</tr>
</tbody>
</table>

6 BRAIN STRUCTURES AND MECHANISMS FOR SPEECH, LANGUAGE, AND HEARING

Introduction | 281 |
The Nervous System: An Overview and Concepts	
Central Versus Peripheral Nervous System	282
Anatomical Planes and Directions	283
White Versus Gray Matter, Tracts Versus Nuclei, Nerves Versus Ganglia	286
Gray Matter and Nuclei	286
White Matter and Fiber Tracts	287
Ganglia	287
Efferent and Afferent	288
Lateralization and Specialization of Function	288
Cerebral Hemispheres and White Matter	
Cerebral Hemispheres	291
Frontal Lobe	291
Parietal Lobe	295
Temporal Lobe	296
Occipital Lobe	298
Insula	299
Limbic System (Limbic Lobe)	299
Cerebral White Matter	300
Association Tracts	300
Striatal Tracts	304
Commissural Tracts	304
Descending Projection Tracts	305
Ascending Projection Tracts	309
Subcortical Nuclei and Cerebellum	310
Basal Ganglia	310
Thalamus	315
Cerebellum	315
Cerebellum and Basal Ganglia: New Concepts	317
Brainstem and Cranial Nerves

Surface Features of the Brainstem: Ventral View
 Ventral Surface of Midbrain 319
 Ventral Surface of Pons 320
 Ventral Surface of Medulla 320
Surface Features of the Brainstem: Dorsal View
 Dorsal Surface of Midbrain 321
 Dorsal Surface of Pons 321
 Dorsal Surface of Medulla 323
Cranial Nerves and Associated Brainstem Nuclei
 Cranial Nerve I (Olfactory) 323
 Cranial Nerve II (Optic) 325
 Cranial Nerve III (Oculomotor) 326
 Cranial Nerve IV (Trochlear) 326
 Cranial Nerve V (Trigeminal) 327
 Cranial Nerve VI (Abducens) 332
 Cranial Nerve VII (Facial) 332
 Cranial Nerve VIII (Auditory-Vestibular Nerve) 334
 Cranial Nerve IX (Glossopharyngeal) 335
 Cranial Nerve X (Vagus) 337
 Cranial Nerve XI (Spinal Accessory Nerve) 338
 Cranial Nerve XII (Hypoglossal) 339

Cortical Innervation Patterns
 Why These Innervation Patterns Matter 340
 The Cranial Nerve Exam and Speech Production 343

Spinal Cord and Spinal Nerves
 Spinal Cord 343
 Spinal Nerves 344

Nervous System Cells
 Glial Cells 346
 Neurons 347
 Cell Body (Soma) 347
 Axon and Terminal Button 348
 Synapse 349
 Resting Potential, Action Potential, and Neurotransmitters
 Resting Potential 349
 Action Potential 350
 Synaptic Transmission and Neurotransmitters 354
 Neuromuscular Junction 356

Meninges, Ventricles, Blood Supply
 Meninges 358
 Dura Mater 359
 Arachnoid Mater 359
 Pia Mater 360
 Meninges and Clinically-Relevant Spaces 360
 Ventricles 360
 Lateral Ventricles 360
 Third Ventricle 361
 Cerebral Aqueduct, Fourth Ventricle, and Other Passageways for CSF 361
Production, Composition, and Circulation of CSF 362
Blood Supply of Brain 363
Anterior Circulation 363
Posterior Circulation 363
Circle of Willis 364
MCA and Blood Supply to the Dominant Hemisphere 365
Blood-Brain Barrier 368
Speech and Language Functions of the Brain: Possible Sites and Mechanisms 369
DIVA: Speech Sound Map (IVPMC) 370
DIVA: Articulatory Velocity/Position Maps (PMC) 373
DIVA: Auditory and Somatosensory Processing: Parietal Cortex and Frontal-Parietal Association Tracts 373
DIVA: Where is Aphasia, Where are Dysarthria Types? 374
Review 375
References 376

7 ACOUSTICS 379
Introduction 379
Pressure Waves 380
The Motions of Vibrating Air Molecules Are Governed by Simple Forces 380
The Motions of Vibrating Air Molecules Change the Local Densities of Air 382
Pressure Waves, Not Individual Molecules, Propagate Through Space and Vary as a Function of Both Space and Time 383
The Variation of a Pressure Wave in Time and Space Can be Measured 383
Temporal Measures 384
Spatial Measures 385
Pressure Waves: A Summary and Introduction of Sinusoids 387
Sinusoidal Motion 388
Sinusoidal Motion (Simple Harmonic Motion) Is Derived from the Linear Projection of Uniform Circular Speed 388
When the Linear Projection of Uniform Circular Speed Is Stretched Out in Time, the Result is a Sine Wave 389
Sinusoidal Motion Can Be Described by a Simple Formula, and Has Three Important Characteristics: Frequency, Amplitude, and Phase 390
Sinusoidal Motion: A Summary 391
Complex Acoustic Events 391
Complex Periodic Events Have Waveforms That Repeat Their Patterns Over Time, and Frequency Components That Are Harmonically Related 391
A Complex Periodic Waveform Can Be Considered as the Sum of the Individual Sinusoids at the Harmonic Frequencies 393
Complex Aperiodic Events Have Waveforms in Which No Repetitive Pattern Can Be Discerned, and Frequency Components That Are Not Harmonically Related 394
Complex Acoustic Events: Summary 396
Resonance 397
Mechanical Resonance 398
A Simple Spring-Mass Model Can Be Used to Explain the Concept of Resonance 398
The Relative Values of Mass (M) and Elasticity (K) Determine the Frequency of Vibration of the Simple Spring-Mass Model 398
The Effects of Mass and Stiffness (Elasticity) on a Resonant System: A Summary 400
9 THEORY OF CONSONANT ACOUSTICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>Why Is the Acoustic Theory of Speech Production Most Accurate and Straightforward for Vowels?</td>
<td>455</td>
</tr>
<tr>
<td>What Are the Acoustics of Coupled (Shunt) Resonators, and How Do They Apply to Consonant Acoustics?</td>
<td>456</td>
</tr>
<tr>
<td>Nasal Murmurs</td>
<td>457</td>
</tr>
<tr>
<td>Energy Loss in the Nasal Cavities, Antiresonances, and the Relative Amplitude of Nasal Murmurs</td>
<td>461</td>
</tr>
<tr>
<td>Nasal Murmurs: A Summary</td>
<td>461</td>
</tr>
<tr>
<td>Nasalization</td>
<td>461</td>
</tr>
<tr>
<td>Nasalization: A Summary</td>
<td>464</td>
</tr>
<tr>
<td>The Importance of Understanding Nasalization</td>
<td>464</td>
</tr>
<tr>
<td>Coupled (Shunt) Resonators in the Production of Lateral Sounds</td>
<td>465</td>
</tr>
<tr>
<td>Coupled (Shunt) Resonators in the Production of Obstruent Sounds</td>
<td>467</td>
</tr>
<tr>
<td>What is the Theory of Fricative Acoustics?</td>
<td>467</td>
</tr>
<tr>
<td>Fluid Flow in Pipes and Source Types</td>
<td>467</td>
</tr>
<tr>
<td>Aeromechanic/Acoustic Effects in Fricatives: A Summary</td>
<td>471</td>
</tr>
<tr>
<td>A Typical Fricative Waveform and Its Aeromechanical Correlates</td>
<td>471</td>
</tr>
<tr>
<td>Mixed Sources in Fricative Production</td>
<td>473</td>
</tr>
<tr>
<td>Shaping of Fricative Sources by Vocal Tract Resonators</td>
<td>473</td>
</tr>
<tr>
<td>Measurement of Fricative Acoustics</td>
<td>475</td>
</tr>
<tr>
<td>Spectral Measurements</td>
<td>476</td>
</tr>
<tr>
<td>Temporal Measurements</td>
<td>477</td>
</tr>
<tr>
<td>The Acoustic Theory of Fricatives: A Summary</td>
<td>478</td>
</tr>
<tr>
<td>What is the Theory of Stop Acoustics?</td>
<td>478</td>
</tr>
<tr>
<td>Intervals of Stop Consonant Articulation: Aeromechanics and Acoustics</td>
<td>480</td>
</tr>
<tr>
<td>Closure (Silent) Interval</td>
<td>480</td>
</tr>
<tr>
<td>Release (Burst) Interval</td>
<td>481</td>
</tr>
<tr>
<td>Frication and Aspiration Intervals</td>
<td>482</td>
</tr>
<tr>
<td>Voice-Onset Time</td>
<td>483</td>
</tr>
<tr>
<td>Shaping of Stop Sources by Vocal Tract Resonators</td>
<td>483</td>
</tr>
<tr>
<td>The Nature of Stop Sources</td>
<td>483</td>
</tr>
<tr>
<td>The Shaping of Stop Sources</td>
<td>484</td>
</tr>
<tr>
<td>Measurement of Stop Acoustics</td>
<td>485</td>
</tr>
<tr>
<td>Spectral Measurements</td>
<td>485</td>
</tr>
<tr>
<td>Temporal Measurements</td>
<td>486</td>
</tr>
<tr>
<td>Stop Consonants: A Summary</td>
<td>486</td>
</tr>
<tr>
<td>What Is the Theory of Affricate Acoustics?</td>
<td>487</td>
</tr>
<tr>
<td>What Kinds of Acoustic Contrasts Are Associated with the Voicing Distinction in Obstruents?</td>
<td>487</td>
</tr>
<tr>
<td>Review</td>
<td>488</td>
</tr>
<tr>
<td>References</td>
<td>488</td>
</tr>
</tbody>
</table>

10 SPEECH ACOUSTIC ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>491</td>
</tr>
<tr>
<td>A Brief Historical Prelude</td>
<td>492</td>
</tr>
<tr>
<td>The Original Sound Spectrograph: History and Technique</td>
<td>497</td>
</tr>
<tr>
<td>The Original Sound Spectrograph: Summary</td>
<td>501</td>
</tr>
<tr>
<td>Interpretation of Spectrograms: Specific Features</td>
<td>501</td>
</tr>
<tr>
<td>Axes</td>
<td>502</td>
</tr>
</tbody>
</table>
11 ACOUSTIC PHONETICS DATA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>521</td>
</tr>
<tr>
<td>Vowels</td>
<td>521</td>
</tr>
<tr>
<td>Vowel Acoustics, Dialect, and a Multicultural View of Acoustic Phonetics</td>
<td>527</td>
</tr>
<tr>
<td>Within-Speaker Variability in Formant Frequencies</td>
<td>530</td>
</tr>
<tr>
<td>Summary of Vowel Formant Frequencies</td>
<td>532</td>
</tr>
<tr>
<td>A Brief Note on Vowel Formant Frequencies Versus Formant Trajectories</td>
<td>533</td>
</tr>
<tr>
<td>Vowel Durations</td>
<td>534</td>
</tr>
<tr>
<td>Intrinsic Vowel Durations</td>
<td>535</td>
</tr>
<tr>
<td>Extrinsic Factors Affecting Vowel Durations</td>
<td>536</td>
</tr>
<tr>
<td>Consonant Voicing</td>
<td>536</td>
</tr>
<tr>
<td>Stress</td>
<td>536</td>
</tr>
<tr>
<td>Speaking Rate</td>
<td>536</td>
</tr>
<tr>
<td>Utterance Position Effects</td>
<td>537</td>
</tr>
<tr>
<td>Speaking Style</td>
<td>537</td>
</tr>
<tr>
<td>Diphthongs</td>
<td>538</td>
</tr>
<tr>
<td>Nasals</td>
<td>541</td>
</tr>
<tr>
<td>Nasal Murmurs</td>
<td>542</td>
</tr>
<tr>
<td>Nasal Place</td>
<td>544</td>
</tr>
<tr>
<td>Nasalization</td>
<td>548</td>
</tr>
<tr>
<td>Semivowels</td>
<td>550</td>
</tr>
<tr>
<td>Semivowel Durations</td>
<td>554</td>
</tr>
<tr>
<td>Fricatives</td>
<td>554</td>
</tr>
<tr>
<td>Formant Transitions and Fricative Distinctions</td>
<td>561</td>
</tr>
<tr>
<td>Fricative Duration</td>
<td>561</td>
</tr>
<tr>
<td>/h/ Acoustics</td>
<td>566</td>
</tr>
<tr>
<td>Stops</td>
<td>567</td>
</tr>
<tr>
<td>Closure Interval and Burst</td>
<td>568</td>
</tr>
<tr>
<td>Flap Closures</td>
<td>570</td>
</tr>
<tr>
<td>Closure Duration and Place of Articulation</td>
<td>571</td>
</tr>
<tr>
<td>Stop Voicing: Some Further Considerations</td>
<td>571</td>
</tr>
<tr>
<td>Bursts</td>
<td>574</td>
</tr>
<tr>
<td>Acoustic Invariance and Theories of Speech Perception</td>
<td>578</td>
</tr>
<tr>
<td>Acoustic Invariance at the Interface of Speech Production and Perception</td>
<td>580</td>
</tr>
</tbody>
</table>
12 SPEECH PERCEPTION

Introduction 593

Early Speech Perception Research and Categorical Perception 593
 The /ba/-/da/-/ga/ Experiment 594
 Categorical Perception: Some General Considerations 595
 Labeling Versus Discrimination 598
 Categorical Perception: So What? 598
 Speech Perception Is Species Specific 600
 Categorical Perception of Stop Place of Articulation Shows the “Match” to 600
 Speech Production 601
 Duplex Perception 601
 Acoustic Invariance 605
 The Competition: General Auditory Explanations of Speech Perception 608
 Sufficient Acoustic Invariance 608
 Replication of Speech Perception Effects Using Nonspeech Signals 609
 Animal and Infant Perception of Speech Signals 611
 The Competition: Direct Realism 611
 A Tentative Summary 613
 Speech Perception and Word Recognition 614
 Why Should Speech-Language Pathologists Care About Speech Perception? 615

Speech Intelligibility 616
 “Explanatory” Speech Intelligibility Tests 616
 Scaled Speech Intelligibility 617

Review 619
References 620

13 SWALLOWING

Introduction 624
Anatomy 625
 Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures 625
 Esophagus 625
 Stomach 626

Forces and Movements of Swallowing 627
 Oral Preparatory Phase 628
 Oral Transport Phase 630
 Pharyngeal Transport Phase 630
 Esophageal Transport Phase 632
 Overlap of Phases 633

Breathing and Swallowing 633
Neural Control of Swallowing 635
Introduction

Welcome to *Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception, Second Edition*. Two preliminaries are offered here. One is a discussion of the focus of the book, the other a discussion of the domain of preclinical speech science.

FOCUS OF THE BOOK

Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception is designed as an introduction to the fundamentals of speech science (inclusive of voice science) that are important to aspiring clinicians and practicing clinicians. The text is suitable for courses that cover the anatomy and physiology of speech production and swallowing, and the acoustics and perception of speech. The material is user friendly to beginning students, yet integrative and translational for graduate students and practicing speech-language pathologists. Certain topics in the text are novel to the speech science and speech-language pathology literatures and suggest important new conceptualizations.

This book is an outgrowth of the three authors’ many years of teaching experience with several thousand undergraduate and graduate students. The development of the book is the result of a sifting and winnowing of the broad range of facts, principles, and methods associated with its topics. The outcome is an integrated fabric that is a logical precursor for clinical study and practice. Chapters in the book are infused with clinical scenarios, sidetracks of clinical and historical interest, considerations of the scientific bases of clinical protocols and methodologies, and discussions of clinical personnel involved in the evaluation and management of disorders of speech production, speech, and swallowing.

The illustrations, done by an extremely talented artist, are a key feature of this book. These original illustrations, largely in full color, are supplemented by a small number of illustrations from other sources. The original illustrations were carefully chosen and drafted to convey only salient features, an approach in line with the written text. Occasional cartoons lighten the material, but carry educational messages.

DOMAIN OF PRECLINICAL SPEECH SCIENCE

The domain of preclinical speech science is portrayed in Figure 1–1. This domain encompasses speech production, speech acoustics, speech perception, and swallowing. Within this domain, consideration is given to levels of observation, subsystems of speech production and swallowing, and applications of data.

Levels of Observation

Speech production and swallowing are processes. They result in acoustic products (more so for speech than swallowing) and perceptual experiences. These processes, products, and experiences involve different levels of observation. Six such levels are represented in Figure 1–1: (a) neural, (b) muscular, (c) structural, (d) aeromechanical, (e) acoustic, and (f) perceptual.

The neural level of observation encompasses nervous system events during speech production and swallowing. These include all events that qualify as motor planning and execution and all forms of afferent and sensory information that influence the ongoing control of speech production and swallowing. The neural level of observation pertains to the parts of...
the brain, spinal cord, and cranial and spinal nerves important to speech production and swallowing and to all underlying neural mechanisms, some voluntary and some automatic, some that involve awareness, and some that do not. Neural data are often derived from physical or metabolic imaging methods that reflect patterns of activation of different regions of the brain. Activation at the neural level can also be inferred from events associated with other (downstream) levels of observation.

The muscular level of observation is concerned with the influence of muscle forces on speech production and swallowing. Muscle forces are responsible for powering these two processes. Muscles are effectors that respond to control signals from the nervous system. The muscular events of speech production and swallowing are manifested in mechanical pulls and are often indexed at the periphery through the electrical activities associated with muscle contractions. Inferences about muscle activities are also made from measurements of the forces or movements generated by different parts of the speech production apparatus and swallowing apparatus. Nevertheless, there are ambiguities introduced when attempting to infer individual muscle activities from forces or movements because forces and movements are usually accomplished by groups of muscles working together. Such inferences, if they can be made at all, require a detailed knowledge of anatomy and physiology.

The structural level of observation deals with movements of the speech production apparatus and swallowing apparatus. This level of observation is concerned with the displacements, velocities, and accelerations/decelerations of structures and how they are timed in relation to the movements of other structures. Certain structural observations can be made with the naked eye, whereas others are hidden from view or are too rapid to be followed with the naked eye and require the use of instrumental monitoring. To the person on the street, the structural level of observation is public evidence of speech production and swallowing. Speech reading (lip reading) has its roots at this level of observation.

The structural movements of speech production and swallowing give rise to an aeromechanical level of observation. It is at this level that air comes into play. Movements of structures impart energy to the air by compressing and decompressing it and causing it to flow from one region to another. The raw airstream generated in association with the aeromechanical level is modified by structures of the speech production apparatus and swallowing apparatus that lie along various passageways. The products of the aeromechanical level are complex, rapid, and nearly continuous changes in air pressures, airflows, and air volumes. These products are usually “invisible,” especially for swallowing. However, those who speak and smoke at the same time or who speak in subfreezing temperatures often provide the observer with the opportunity to visualize certain aeromechanical events.

The acoustic level of observation is fully within the public domain. Although certain aspects of swallowing may be accompanied by sounds, primacy at this level pertains to the generation of speech sounds. The raw material of the acoustic level is the buzzlike, hisslike, and poplike sounds that result from the speaker’s valving of the airstream in different ways and at different locations within the speech production apparatus. This raw material is filtered and conditioned by its passage through the apparatus and radiates from the mouth or nose, or both, in the form of nearly continuous changes in atmospheric pressure. The sound waves that are formed propagate spherically from the speaker and can be coded in terms of frequency, sound pressure level, and time. These sound waves are what constitute speech, an acoustic representation of language. The acoustic level is important in face-to-face interactions.
communication and in the use of telephones, radios, televisions, and various forms of recording. It is this level that makes it possible for many listeners to be engaged simultaneously and makes it possible to communicate effectively around corners, through obstacles, in the dark, and over long distances.

The perceptual level of observation has somewhat different manifestations for speech production and swallowing. For speech production, it pertains primarily to auditory events. Kinesthesia (movement sensation), proprioception (position-in-space sensation), and touch-pressure sensation are important as bases for staying informed about ongoing speech production events, but the principal factor is audition (hearing sensation). Visual information is sometimes important as well, and experience and knowledge of the language is critical for extracting meaning from speech. In contrast, swallowing is highly dependent on kinesthesia, touch-pressure sensation, and even taste, with relatively little reliance on auditory or visual information. Cognitive processes contribute to various degrees at the perceptual level of observation for both speech production and swallowing.

The levels of observation portrayed in Figure 1–1 are not completely separate entities, but have important interactions. These interactions are not shown in the figure, but are discussed in subsequent chapters.

Subsystems of Speech Production and Swallowing

The speech production apparatus and the swallowing apparatus perform different activities. However, they share many structural and functional components and, although different in their control and movement, can be viewed along similar lines. It is convenient, for discussion purposes, to partition the speech production apparatus and swallowing apparatus into subsystems. Speech production subsystems may differ when chosen by a linguist versus a speech scientist versus a speech-language pathologist. And swallowing subsystems may differ when chosen by a swallowing scientist versus a gastroenterologist versus a speech-language pathologist. For the purposes of this book, four subsystems are used for speech production and swallowing. As illustrated in Figure 1–1, these include the: (a) breathing apparatus, (b) laryngeal apparatus, (c) velopharyngeal-nasal apparatus, and (d) pharyngeal-oral apparatus. The role of each of these subsystems is considered in detail in subsequent chapters. The functional significance of each of the four subsystems differs between speech production and swallowing, but each subsystem is critically important to its respective behaviors and each manifests in clinical signs that can reveal abnormality.

The breathing apparatus is defined in the present context to include structures below the larynx within the neck and torso. These are, most importantly, the pulmonary apparatus (pulmonary airways and lungs) and chest wall apparatus (rib cage wall, diaphragm, abdominal wall, and abdominal content). During speech production, the breathing apparatus provides the necessary driving forces, while simultaneously serving the functions of ventilation and gas exchange. During swallowing, the breathing apparatus engages in a period of apnea (breath holding) to protect the pulmonary airways and lungs from the intrusion of unwanted substances (food and liquid). The breathing apparatus is the largest of the subsystems and its role in speech production and swallowing is fundamentally important.

The laryngeal apparatus lies between the trachea (windpipe) and the pharynx (throat) and adjusts the coupling between the two. At times, the laryngeal airway is open to allow air to move in and out of the breathing apparatus, whereas at times it is adjusted to obstruct or constrict the airway. During speech production, obstructions and constrictions enable the generation of transient and sustained noises, respectively. Very rapid to and fro movements of the vocal folds within the larynx create voiced sounds and give the laryngeal apparatus its colloquial label “voice box.” During swallowing, the laryngeal apparatus is active in closing the laryngeal airway to protect the pulmonary airways. Food and liquid are then able to pass over and around the larynx and into the esophagus on their way to the stomach.

The velopharyngeal-nasal apparatus consists of the upper pharynx, velum, nasal cavities, and outer nose. When breathing through the nose, the velopharyngeal-nasal airway is open. When speaking, the size of the velopharyngeal port varies, depending on the nature of the speech produced. For example, consonant sounds that require high oral air pressure are typically associated with airtight closure of the velopharyngeal port, whereas nasal consonants are produced with an open velopharyngeal port. Function of the velopharyngeal-nasal apparatus during swallowing is concerned mainly with keeping the velopharynx sealed airtight. This prevents the passage of food and liquid into the nasal cavities, while substances are moved backward and downward through the oropharynx.

The pharyngeal-oral apparatus comprises the middle and lower pharynx, oral cavity, and oral vesti-
bule. During running speech production, the apparatus is typically open during inspiration and makes different adjustments for consonant and vowel productions during expiration, including the generation of transient, voiceless, and voiced sounds and the filtering of those sounds. During swallowing, the pharyngeal-oral apparatus prepares food and liquid and propels it to the esophagus.

Applications of Data

There are many applications of data obtained about speech production and swallowing. These applications depend on who selects and defines the data and what the goals are for collecting and analyzing them. For the purposes of this book, applications of data are categorized into four areas: (a) mechanism, (b) evaluation, (c) management, and (d) forensics. These are shown in Figure 1–1.

One application of data is the understanding of mechanism. This use provides the foundational bases for knowing how speech is produced and how swallowing is performed. Such foundational bases are important for their heuristic value in elucidating fundamental processes and working principles and for differentiating normal from abnormal.

Another application of data is its use in evaluation. This use is usually practical in nature and involves quantitative determinations of the status and functional capabilities of an individual’s speech production, speech, and swallowing. Evaluation first enables a determination as to whether or not abnormality exists. If abnormality does exist, then appropriate evaluation may contribute to: (a) making a diagnosis, (b) developing a rational, effective, and efficient management plan, (c) monitoring progress during the course of management, and (d) providing a reasonable prognosis as to the extent and speed of improvement to be expected. For example, a specific use of subsystems analysis in the evaluation of speech production is the determination of how individual subsystems contribute to deficits in speech intelligibility. Two individuals may have equivalent intelligibility problems as determined by formal tests, but have different subsystems “explanations” for their deficits. The careful evaluation of subsystems performance can point to which parts of the speech production apparatus may be particularly responsible for speech intelligibility deficits, and how those parts should be addressed in management. Evaluation relies on an understanding of what constitutes normal function.

A third application of data is management. Different interventions may be based on any of the six levels of observation and include any of the four subsystems of speech production and swallowing. Different management strategies may include adjusting individual variables or combinations of variables, staging the order of different interventions, and providing feedback about speech production and swallowing processes, products, and experiences. Management data provide information about outcome and whether or not interventions are effective, efficient, and long-lasting. Management data can also be used to compare and contrast different interventions to arrive at optimal choices.

The remaining application of data is their use in forensics. This application is concerned with scientific facts and expert opinion as they relate to legal issues. The speech scientist and speech-language pathologist are sometimes called on to give legal depositions or to testify in courts of law in a variety of forensic contexts. Forensic uses of data may include issues pertaining to speaker identification, speaker status under the influence of drugs or alcohol, and speaker intent at deceit, among others. Forensic uses of data may also relate to personal injury claims or malpractice claims. These may involve speech production, speech, or swallowing alone, or in different combinations, and may include adversarial depositions and testimonies of other experts. Under such circumstances, the status and capabilities of the individuals claiming personal injury or malpractice may be considered from the perspective of underlying mechanism, evaluation, and management.

REVIEW

Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception is intended as an introduction to the fundamentals of speech science (inclusive of voice science) that are important to aspiring clinicians and practicing clinicians.

The text is suitable for different courses that cover anatomy and physiology of speech production and swallowing, and the acoustics and perception of speech.

The material in the text is strongly integrative and translational, applicable to both undergraduate and graduate students, and a source of continuing education and reference for practicing speech-language pathologists.
The domain of preclinical speech science encompasses different levels of observation, different subsystems of speech production and swallowing, and different applications of data.

Levels of observation include the neural, muscular, structural, aeromechanical, acoustic, and perceptual levels.

Subsystems of speech production and swallowing include the breathing apparatus, laryngeal apparatus, velopharyngeal-nasal apparatus, and pharyngeal-oral apparatus.

Applications of data include the understanding of mechanism, evaluation, management, and forensics.