Contents

ACKNOWLEDGEMENTS xvii

INTRODUCTION 1

1. **Focus of the Book** 1
2. **Domain of Preclinical Speech Science** 1
 - Levels of Observation 1
3. **Subsystems of Speech Production and Swallowing** 3
 - Applications of Data 4
4. **Review** 4

BREATHING AND SPEECH PRODUCTION 7

1. **Introduction** 9
2. **Fundamentals of Breathing** 9
 - Anatomical Bases of Breathing 9
 - Skeletal Superstructure 10
 - Breathing Apparatus and Its Subdivisions 10
3. **Forces and Movements of Breathing** 13
 - Forces of Breathing 13
 - Realization of Active and Passive Forces 20
4. **Movements of Breathing** 20
5. **Adjustments of the Breathing Apparatus** 24
 - Pulmonary Apparatus 24
 - Chest Wall 24
 - Pulmonary Apparatus-Chest Wall Unit 25
6. **Output Variables of Breathing** 27
 - Volume 27
 - Pressure 28
 - Shape 31
7. **Neural Control of Breathing** 33
 - Neural Substrates 33
8. **Control of Tidal Breathing** 34
9. **Control of Special Acts of Breathing** 35
10. **Ventilation and Gas Exchange During Tidal Breathing** 36
11. **Breathing and Speech Production** 38
 - Breathing in Extended Steady Utterances 38
 - Breathing in Running Speech Activities 43
 - Adaptive Control of Speech Breathing 47
12. **Body Position and Speech Breathing** 47
 - Extended Steady Utterances in the Supine Body Position 48
 - Running Speech Activities in the Supine Body Position 50
13. **Speech Breathing in Other Body Positions** 52
Ventilation, Gas Exchange, and Speech Breathing 53
- Drive to Breathe and Speech Breathing 53
- Cognitive-Linguistic Factors and Speech Breathing 55
- Conversational Interchange and Speech Breathing 56
- Body Type and Speech Breathing 57
- Development and Speech Breathing 57
- Age and Speech Breathing 59
- Sex and Speech Breathing 59

Measurement of Breathing 59
- Volume Measurement 59
- Pressure Measurement 62
- Shape Measurement 63

Speech Breathing Disorders 63

Clinical Professionals and Speech Breathing Disorders 64

Review 65

References 68

LARYNGEAL FUNCTION AND SPEECH PRODUCTION 73

Introduction 74

Fundamentals of Laryngeal Function 75
- Anatomy of the Laryngeal Apparatus 75
 - Skeleton 75
 - Laryngeal Joints 80
 - Internal Topography 83
- Forces and Movements of the Laryngeal Apparatus 88
 - Forces of the Laryngeal Apparatus 88
 - Movements of the Laryngeal Apparatus 96
- Adjustments of the Laryngeal Apparatus 97
- Abduction of the Vocal Folds 97
- Adduction of the Vocal Folds 98
- Changing the Length of the Vocal Folds 99
- Changing the Position and/or Configuration of the Ventricular Folds 101
- Changing the Position and/or Configuration of the Epiglottis 101
- Changing the Position of the Laryngeal Housing 101

Control Variables of Laryngeal Function 102
- Laryngeal Opposing Pressure 102
- Laryngeal Airway Resistance 103
- Glottal Size and Configuration 104
- Stiffness of the Vocal Folds 105
- Effective Mass of the Vocal Folds 106

Neural Substrates of Laryngeal Control 107

Laryngeal Functions 109
- Degree of Coupling Between the Trachea and Pharynx 109
- Protection of the Pulmonary Airways 109
- Containment of the Pulmonary Air Supply 109
- Sound Generation 109

Laryngeal Function in Speech Production 109
- Transient Utterances 109
- Sustained Utterances 111
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence Noise Production</td>
<td>111</td>
</tr>
<tr>
<td>Voice Production</td>
<td>112</td>
</tr>
<tr>
<td>Running Speech Activities</td>
<td>125</td>
</tr>
<tr>
<td>Fundamental Frequency</td>
<td>126</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>127</td>
</tr>
<tr>
<td>Spectrum</td>
<td>127</td>
</tr>
<tr>
<td>Development and Laryngeal Function in Speech Production</td>
<td>128</td>
</tr>
<tr>
<td>Age and Laryngeal Function in Speech Production</td>
<td>130</td>
</tr>
<tr>
<td>Sex and Laryngeal Function in Speech Production</td>
<td>131</td>
</tr>
<tr>
<td>Measurement of Laryngeal Function</td>
<td>134</td>
</tr>
<tr>
<td>Endoscopy</td>
<td>134</td>
</tr>
<tr>
<td>Electroglostography</td>
<td>136</td>
</tr>
<tr>
<td>Aeromechanical Observations</td>
<td>138</td>
</tr>
<tr>
<td>Acoustic Observations</td>
<td>139</td>
</tr>
<tr>
<td>Laryngeal Disorders and Speech Production</td>
<td>141</td>
</tr>
<tr>
<td>Clinical Professionals and Laryngeal Disorders in Speech Production</td>
<td>142</td>
</tr>
<tr>
<td>Review</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td>147</td>
</tr>
</tbody>
</table>

4 VELOPHARYNGEAL-NASAL FUNCTION AND SPEECH PRODUCTION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>157</td>
</tr>
<tr>
<td>Fundamentals of Velopharyngeal-Nasal Function</td>
<td>157</td>
</tr>
<tr>
<td>Anatomy of the Velopharyngeal-Nasal Apparatus</td>
<td>157</td>
</tr>
<tr>
<td>Skeletal Superstructure</td>
<td>157</td>
</tr>
<tr>
<td>Pharynx</td>
<td>159</td>
</tr>
<tr>
<td>Velum</td>
<td>161</td>
</tr>
<tr>
<td>Nasal Cavities</td>
<td>162</td>
</tr>
<tr>
<td>Outer Nose</td>
<td>162</td>
</tr>
<tr>
<td>Forces and Movements of the Velopharyngeal-Nasal Apparatus</td>
<td>164</td>
</tr>
<tr>
<td>Forces of the Velopharyngeal-Nasal Apparatus</td>
<td>164</td>
</tr>
<tr>
<td>Movements of the Velopharyngeal-Nasal Apparatus</td>
<td>172</td>
</tr>
<tr>
<td>Adjustments of the Velopharyngeal-Nasal Apparatus</td>
<td>173</td>
</tr>
<tr>
<td>Coupling Between the Oral and Nasal Cavities</td>
<td>173</td>
</tr>
<tr>
<td>Coupling Between the Nasal Cavities and Atmosphere</td>
<td>175</td>
</tr>
<tr>
<td>Control Variables of Velopharyngeal-Nasal Function</td>
<td>175</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Airway Resistance</td>
<td>176</td>
</tr>
<tr>
<td>Velopharyngeal Sphincter Compression</td>
<td>177</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Acoustic Impedance</td>
<td>178</td>
</tr>
<tr>
<td>Neural Substrates of Velopharyngeal-Nasal Control</td>
<td>179</td>
</tr>
<tr>
<td>Ventilation and Velopharyngeal-Nasal Function</td>
<td>180</td>
</tr>
<tr>
<td>Nasal Valve Modulation</td>
<td>180</td>
</tr>
<tr>
<td>Nasal Cycling (Side-to-Side)</td>
<td>182</td>
</tr>
<tr>
<td>Nasal-Oral Switching</td>
<td>183</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Function and Speech Production</td>
<td>184</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Function and Sustained Utterances</td>
<td>184</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Function and Running Speech Activities</td>
<td>187</td>
</tr>
<tr>
<td>Gravity and Velopharyngeal-Nasal Function in Speech Production</td>
<td>188</td>
</tr>
<tr>
<td>Development of Velopharyngeal-Nasal Function in Speech Production</td>
<td>190</td>
</tr>
<tr>
<td>Age and Velopharyngeal-Nasal Function in Speech Production</td>
<td>192</td>
</tr>
</tbody>
</table>
Sex and Velopharyngeal-Nasal Function in Speech Production
Measurement of Velopharyngeal-Nasal Function
Direct Visualization
X-Ray Imaging
Aeromechanical Observations
Acoustic Observations
Velopharyngeal-Nasal Disorders and Speech Production
Clinical Professionals and Velopharyngeal-Nasal Disorders in Speech Production
Review
References

PHARYNGEAL-ORAL FUNCTION AND SPEECH PRODUCTION

Introduction
Fundamentals of Pharyngeal-Oral Function
Anatomy of the Pharyngeal-Oral Apparatus
 Skeleton
 Temporomandibular Joints
 Temporomandibular Joint Movements
 Internal Topography
Forces and Movements of the Pharyngeal-Oral Apparatus
 Forces of the Pharyngeal-Oral Apparatus
 Movements of the Pharyngeal-Oral Apparatus
Adjustments of the Pharyngeal-Oral Apparatus
 Adjustments of the Pharynx
 Adjustments of the Mandible
 Adjustments of the Tongue
 Adjustments of the Lips
Control Variables of Pharyngeal-Oral Function
 Pharyngeal-Oral Lumen Size and Configuration
 Pharyngeal-Oral Structural Contact Pressure
 Pharyngeal-Oral Airway Resistance
 Pharyngeal-Oral Acoustic Impedance
Neural Substrates of Pharyngeal-Oral Control
Pharyngeal-Oral Functions
 Degree of Coupling Between the Oral Cavity and Atmosphere
 Chewing
 Swallowing
 Sound Generation and Filtering
Pharyngeal-Oral Function in Speech Production
 The Speech Production Code
 Vowel-Coding Scheme
 Diphthong-Coding Scheme
 Consonant-Coding Scheme
 The Speech Production Stream
 A Primer on Theories of Speech Production
 Traditional Theory of Feature Spreading
 Articulatory Phonology or Gesture Theory
Development and Pharyngeal-Oral Function in Speech Production
Age and Pharyngeal-Oral Function in Speech Production
Sex and Pharyngeal-Oral Function in Speech Production 259
Measurement of Pharyngeal-Oral Function 260
X-Ray Imaging 260
Strain-Gauge Monitoring 261
Articulatory Tracking 261
X-Ray Microbeam Imaging 261
Electromagnetic Sensing 262
Optoelectronic Tracking 263
Electropalatographic Monitoring 263
Magnetic Resonance Imaging 264
Ultrasonic Imaging 264
Aeromechanical Observations 266
Acoustic Observations 266
Pharyngeal-Oral Disorders and Speech Production 267
Clinical Professionals and Pharyngeal-Oral Disorders in Speech Production 269
Reviews 270
References 274

6 BRAIN STRUCTURES AND MECHANISMS FOR SPEECH, LANGUAGE, AND HEARING 281

Introduction 281
The Nervous System: An Overview and Concepts 281
Central Versus Peripheral Nervous System 282
Anatomical Planes and Directions 283
White Versus Gray Matter, Tracts Versus Nuclei, Nerves Versus Ganglia 286
Gray Matter and Nuclei 286
White Matter and Fiber Tracts 287
Ganglia 287
Efferent and Afferent 288
Lateralization and Specialization of Function 288
Cerebral Hemispheres and White Matter 291
Cerebral Hemispheres 291
Frontal Lobe 291
Parietal Lobe 295
Temporal Lobe 296
Occipital Lobe 298
Insula 299
Limbic System (Limbic Lobe) 299
Cerebral White Matter 300
Association Tracts 300
Striatal Tracts 304
Commissural Tracts 304
Descending Projection Tracts 305
Ascending Projection Tracts 309
Subcortical Nuclei and Cerebellum 310
Basal Ganglia 310
Thalamus 315
Cerebellum 315
Cerebellum and Basal Ganglia: New Concepts 317
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainstem and Cranial Nerves</td>
<td>317</td>
</tr>
<tr>
<td>Surface Features of the Brainstem: Ventral View</td>
<td>319</td>
</tr>
<tr>
<td>Ventral Surface of Midbrain</td>
<td>320</td>
</tr>
<tr>
<td>Ventral Surface of Pons</td>
<td>320</td>
</tr>
<tr>
<td>Ventral Surface of Medulla</td>
<td>320</td>
</tr>
<tr>
<td>Surface Features of the Brainstem: Dorsal View</td>
<td>321</td>
</tr>
<tr>
<td>Dorsal Surface of Midbrain</td>
<td>321</td>
</tr>
<tr>
<td>Dorsal Surface of Pons</td>
<td>321</td>
</tr>
<tr>
<td>Dorsal Surface of Medulla</td>
<td>323</td>
</tr>
<tr>
<td>Cranial Nerves and Associated Brainstem Nuclei</td>
<td>323</td>
</tr>
<tr>
<td>Cranial Nerve I (Olfactory)</td>
<td>323</td>
</tr>
<tr>
<td>Cranial Nerve II (Optic)</td>
<td>325</td>
</tr>
<tr>
<td>Cranial Nerve III (Oculomotor)</td>
<td>326</td>
</tr>
<tr>
<td>Cranial Nerve IV (Trochlear)</td>
<td>326</td>
</tr>
<tr>
<td>Cranial Nerve V (Trigeminal)</td>
<td>327</td>
</tr>
<tr>
<td>Cranial Nerve VI (Abducens)</td>
<td>332</td>
</tr>
<tr>
<td>Cranial Nerve VII (Facial)</td>
<td>332</td>
</tr>
<tr>
<td>Cranial Nerve VIII (Auditory-Vestibular Nerve)</td>
<td>334</td>
</tr>
<tr>
<td>Cranial Nerve IX (Glossopharyngeal)</td>
<td>335</td>
</tr>
<tr>
<td>Cranial Nerve X (Vagus)</td>
<td>337</td>
</tr>
<tr>
<td>Cranial Nerve XI (Spinal Accessory Nerve)</td>
<td>338</td>
</tr>
<tr>
<td>Cranial Nerve XII (Hypoglossal)</td>
<td>339</td>
</tr>
<tr>
<td>Cortical Innervation Patterns</td>
<td>340</td>
</tr>
<tr>
<td>Why These Innervation Patterns Matter</td>
<td>341</td>
</tr>
<tr>
<td>The Cranial Nerve Exam and Speech Production</td>
<td>343</td>
</tr>
<tr>
<td>Spinal Cord and Spinal Nerves</td>
<td>343</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>343</td>
</tr>
<tr>
<td>Spinal Nerves</td>
<td>344</td>
</tr>
<tr>
<td>Nervous System Cells</td>
<td>345</td>
</tr>
<tr>
<td>Glial Cells</td>
<td>346</td>
</tr>
<tr>
<td>Neurons</td>
<td>347</td>
</tr>
<tr>
<td>Cell Body (Soma)</td>
<td>347</td>
</tr>
<tr>
<td>Axon and Terminal Button</td>
<td>348</td>
</tr>
<tr>
<td>Synapse</td>
<td>349</td>
</tr>
<tr>
<td>Resting Potential, Action Potential, and Neurotransmitters</td>
<td>349</td>
</tr>
<tr>
<td>Resting Potential</td>
<td>350</td>
</tr>
<tr>
<td>Action Potential</td>
<td>352</td>
</tr>
<tr>
<td>Synaptic Transmission and Neurotransmitters</td>
<td>354</td>
</tr>
<tr>
<td>Neuromuscular Junction</td>
<td>356</td>
</tr>
<tr>
<td>Meninges, Ventricles, Blood Supply</td>
<td>357</td>
</tr>
<tr>
<td>Meninges</td>
<td>358</td>
</tr>
<tr>
<td>Dura Mater</td>
<td>359</td>
</tr>
<tr>
<td>Arachnoid Mater</td>
<td>359</td>
</tr>
<tr>
<td>Pia Mater</td>
<td>360</td>
</tr>
<tr>
<td>Meninges and Clinically-Relevant Spaces</td>
<td>360</td>
</tr>
<tr>
<td>Ventricles</td>
<td>360</td>
</tr>
<tr>
<td>Lateral Ventricles</td>
<td>360</td>
</tr>
<tr>
<td>Third Ventricle</td>
<td>361</td>
</tr>
<tr>
<td>Cerebral Aqueduct, Fourth Ventricle, and Other Passageways for CSF</td>
<td>361</td>
</tr>
</tbody>
</table>
Production, Composition, and Circulation of CSF 362
Blood Supply of Brain 363
Anterior Circulation 363
Posterior Circulation 363
Circle of Willis 364
MCA and Blood Supply to the Dominant Hemisphere 365
Blood-Brain Barrier 368

Speech and Language Functions of the Brain: Possible Sites and Mechanisms 369
DIVA: Speech Sound Map (iVPMC) 370
DIVA: Articulatory Velocity/Position Maps (PMC) 373
DIVA: Auditory and Somatosensory Processing: Parietal Cortex and Frontal-Parietal Association Tracts 373
DIVA: Where is Aphasia, Where are Dysarthria Types? 374
Review 375
References 376

7 ACOUSTICS 379
Introduction 379
Pressure Waves 380
The Motions of Vibrating Air Molecules Are Governed by Simple Forces 380
The Motions of Vibrating Air Molecules Change the Local Densities of Air 382
Pressure Waves, Not Individual Molecules, Propagate Through Space and Vary as a Function of Both Space and Time 383
The Variation of a Pressure Wave in Time and Space Can be Measured 383
Temporal Measures 384
Spatial Measures 385
Pressure Waves: A Summary and Introduction of Sinusoids 387
Sinusoidal Motion 388
Sinusoidal Motion (Simple Harmonic Motion) Is Derived from the Linear Projection of Uniform Circular Speed 388
When the Linear Projection of Uniform Circular Speed Is Stretched Out in Time, the Result is a Sine Wave 389
Sinusoidal Motion Can Be Described by a Simple Formula, and Has Three Important Characteristics: Frequency, Amplitude, and Phase 390
Sinusoidal Motion: A Summary 391
Complex Acoustic Events 391
Complex Periodic Events Have Waveforms That Repeat Their Patterns Over Time, and Frequency Components That Are Harmonically Related 391
A Complex Periodic Waveform Can Be Considered as the Sum of the Individual Sinusoids at the Harmonic Frequencies 393
Complex Aperiodic Events Have Waveforms in Which No Repetitive Pattern Can Be Discerned, and Frequency Components That Are Not Harmonically Related 394
Complex Acoustic Events: Summary 396
Resonance 397
Mechanical Resonance 398
A Simple Spring-Mass Model Can Be Used to Explain the Concept of Resonance 398
The Relative Values of Mass (M) and Elasticity (K) Determine the Frequency of Vibration of the Simple Spring-Mass Model 398
The Effects of Mass and Stiffness (Elasticity) on a Resonant System: A Summary 400
Acoustic Resonance: Helmholtz Resonators 401
The Neck of the Helmholtz Resonator Contains a Column, or Plug of Air, That 401
Behaves Like a Mass When a Force Is Applied to It
The Bowl of a Resonator Contains a Volume of Air That Behaves Like a Spring 402
When a Force Is Applied to It
Acoustic Resonance: Tube Resonators 403
Resonance in Tubes: A Summary 407
Resonance Curves, Damping, and Bandwidth 408
Energy Loss (Damping) in Vibratory Systems Can Be Attributed to Four Factors 408
Time- and Frequency-Domain Representations of Damping in Acoustic Vibratory Systems 408
An Extension of the Resonance Curve Concept: The Shaping of a Source by the Acoustic Characteristics of a Resonator 411
Resonance, Damping, and Bandwidth: A Summary 412
Review 412
References 413

8 ACOUSTIC THEORY OF VOWEL PRODUCTION 415
Introduction 415
What Is the Precise Nature of the Input Signal Generated by the Vibrating Vocal Folds? 416
The Time Domain 416
The Frequency Domain 419
The Periodic Nature of the Waveform 420
The Shape of the Waveform 421
The Ratio of Open Time to Closed Time 423
Nature of the Input Signal: A Summary 423
Why Should the Vocal Tract Be Conceptualized as a Tube Closed at One End? 423
The Response of the Vocal Tract to Excitation 425
How Are the Acoustic Properties of the Vocal Tract Determined? 425
Area Function of the Vocal Tract 427
How Does the Vocal Tract Shape the Input Signal? (How Is the Source Spectrum Combined with the Theoretical Vocal Tract Spectrum to Produce a Vocal Tract Output?) 429
Formant Bandwidths 434
Acoustic Theory of Vowel Production: A Summary 434
What Happens to the Resonant Frequencies of the Vocal Tract When the Tube Is Constricted at a Given Location? 435
The Three-Parameter Model of Stevens and House 440
Tongue Height 443
Tongue Advancement 444
Configuration of the Lips 444
Importance of the Stevens and House Rules: A Summary 447
The Connection Between the Stevens and House Rules and Perturbation Theory 447
Why Are the Stevens and House Rules Important? 449
Another Take on the Relationship Between Vocal Tract Configuration and Vocal Tract Resonances 450
Confirmation of the Acoustic Theory of Vowel Production 451
Analog Experiments 451
Human Experiments 451
Review 453
References 453
THEORY OF CONSONANT ACOUSTICS

9

Introduction

Why Is the Acoustic Theory of Speech Production Most Accurate and Straightforward for Vowels?

What Are the Acoustics of Coupled (Shunt) Resonators, and How Do They Apply to Consonant Acoustics?

Nasal Murmurs

Energy Loss in the Nasal Cavities, Antiresonances, and the Relative Amplitude of Nasal Murmurs

Nasal Murmurs: A Summary

Nasalization

Nasalization: A Summary

The Importance of Understanding Nasalization

Coupled (Shunt) Resonators in the Production of Lateral Sounds

Coupled (Shunt) Resonators in the Production of Obstruent Sounds

What is the Theory of Fricative Acoustics?

Fluid Flow in Pipes and Source Types

Aeromechanic/Acoustic Effects in Fricatives: A Summary

A Typical Fricative Waveform and Its Aeromechanical Correlates

Mixed Sources in Fricative Production

Shaping of Fricative Sources by Vocal Tract Resonators

Measurement of Fricative Acoustics

Spectral Measurements

Temporal Measurements

The Acoustic Theory of Fricatives: A Summary

What is the Theory of Stop Acoustics?

Intervals of Stop Consonant Articulation: Aeromechanics and Acoustics

Closure (Silent) Interval

Release (Burst) Interval

Frication and Aspiration Intervals

Voice-Onset Time

Shaping of Stop Sources by Vocal Tract Resonators

The Nature of Stop Sources

The Shaping of Stop Sources

Measurement of Stop Acoustics

Spectral Measurements

Temporal Measurements

Stop Consonants: A Summary

What Is the Theory of Affricate Acoustics?

What Kinds of Acoustic Contrasts Are Associated with the Voicing Distinction in Obstruents?

Review

References

10 SPEECH ACOUSTIC ANALYSIS

Introduction

A Brief Historical Prelude

The Original Sound Spectrograph: History and Technique

The Original Sound Spectrograph: Summary

Interpretation of Spectrograms: Specific Features

Axes

References
Glottal Pulses 503
Formant Frequencies 504
Silent Intervals and Stop Bursts 505
Aperiodic Intervals 507
Segmentation of Spectrograms 507

Speech Acoustics is Not All About Segments: Suprasegmentals 510

Digital Techniques for Speech Analysis 512
Speech Analysis by Computer: From Recording to Analysis to Output 513
Sampling Rate 514
Sampling Rate Sidebar: Anti-Aliasing Filters 515
Quantization (Bits) 516
Analysis and Display 517

Review 519
References 520

11 ACoustIC PhONETICS DATA 521

Introduction 521
Vowels 521
Vowel Acoustics, Dialect, and a Multicultural View of Acoustic Phonetics 527
Within-Speaker Variability in Formant Frequencies 530
Summary of Vowel Formant Frequencies 532
A Brief Note on Vowel Formant Frequencies Versus Formant Trajectories 533
Vowel Durations 534
Intrinsic Vowel Durations 535
Extrinsic Factors Affecting Vowel Durations 536
Consonant Voicing 536
Stress 536
Speaking Rate 536
Utterance Position Effects 537
Speaking Style 537
Diphthongs 538
Nasals 541
Nasal Murmurs 542
Nasal Place 544
Nasalization 548
Semivowels 550
Semivowel Durations 554
Fricatives 554
Formant Transitions and Fricative Distinctions 561
Fricative Duration 561
/h/ Acoustics 566
Stops 567
Closure Interval and Burst 568
Flap Closures 570
Closure Duration and Place of Articulation 571
Stop Voicing: Some Further Considerations 571
Bursts 574
Acoustic Invariance and Theories of Speech Perception 578
Acoustic Invariance at the Interface of Speech Production and Perception 580
Affricates	581
Acoustic Characteristics of Prosody	581
Phrase-level F0 Contours	581
Phrase-level Intensity Contours	584
Stress	585
Rhythm	586
Review	587
References	587

12 SPEECH PERCEPTION 593

Introduction 593

Early Speech Perception Research and Categorical Perception 593
- The /ba/-/da/-/ga/ Experiment 594
- Categorical Perception: Some General Considerations 595
 - Labeling Versus Discrimination 598
- Categorical Perception: So What? 598
 - Speech Perception Is Species Specific 600
 - Categorical Perception of Stop Place of Articulation Shows the “Match” to Speech Production 600
 - Duplex Perception 601
 - Acoustic Invariance 601

The Competition: General Auditory Explanations of Speech Perception 608
- Sufficient Acoustic Invariance 608
- Replication of Speech Perception Effects Using Nonspeech Signals 609

Animal and Infant Perception of Speech Signals 611
- The Competition: Direct Realism 611
 - A Tentative Summary 613
- Speech Perception and Word Recognition 614
- Why Should Speech-Language Pathologists Care About Speech Perception? 614

Speech Intelligibility 616
- “Explanatory” Speech Intelligibility Tests 616
- Scaled Speech Intelligibility 617

Review 619

References 620

13 SWALLOWING 623

Introduction 624

Anatomy 625
- Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures 625
- Esophagus 625
- Stomach 626

Forces and Movements of Swallowing 627
- Oral Preparatory Phase 628
- Oral Transport Phase 630
- Pharyngeal Transport Phase 630
- Esophageal Transport Phase 632
- Overlap of Phases 633

Breathing and Swallowing 633

Neural Control of Swallowing 635
Role of the Peripheral Nervous System in Swallowing 635
Role of the Central Nervous System in Swallowing 636
Variables that Influence Swallowing 637
Bolus Characteristics and Swallowing 637
 Consistency 637
 Volume 638
 Taste and Temperature 638
Swallowing Mode 639
 Single Versus Sequential Swallows 639
 Cued Versus Uncued Swallows 640
Body Position and Swallowing 640
Development and Swallowing 641
Age and Swallowing 642
Sex and Swallowing 642
Measurement of Swallowing 642
 Videofluoroscopy 642
 Endoscopy 644
 Ultrasonography 645
 Manometry 645
Swallowing Disorders 646
Clinical Professionals and Swallowing Disorders 647
Review 648
References 650

NAME INDEX 655
SUBJECT INDEX 667
Welcome to *Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception, Second Edition*. Two preliminaries are offered here. One is a discussion of the focus of the book, the other a discussion of the domain of preclinical speech science.

FOCUS OF THE BOOK

Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception is designed as an introduction to the fundamentals of speech science (inclusive of voice science) that are important to aspiring clinicians and practicing clinicians. The text is suitable for courses that cover the anatomy and physiology of speech production and swallowing, and the acoustics and perception of speech. The material is user friendly to beginning students, yet integrative and translational for graduate students and practicing speech-language pathologists. Certain topics in the text are novel to the speech science and speech-language pathology literatures and suggest important new conceptualizations.

This book is an outgrowth of the three authors’ many years of teaching experience with several thousand undergraduate and graduate students. The development of the book is the result of a sifting and winnowing of the broad range of facts, principles, and methods associated with its topics. The outcome is an integrated fabric that is a logical precursor for clinical study and practice. Chapters in the book are infused with clinical scenarios, sidetracks of clinical and historical interest, considerations of the scientific bases of clinical protocols and methodologies, and discussions of clinical personnel involved in the evaluation and management of disorders of speech production, speech, and swallowing.

The illustrations, done by an extremely talented artist, are a key feature of this book. These original illustrations, largely in full color, are supplemented by a small number of illustrations from other sources. The original illustrations were carefully chosen and drafted to convey only salient features, an approach in line with the written text. Occasional cartoons lighten the material, but carry educational messages.

DOMAIN OF PRECLINICAL SPEECH SCIENCE

The domain of preclinical speech science is portrayed in Figure 1–1. This domain encompasses speech production, speech acoustics, speech perception, and swallowing. Within this domain, consideration is given to levels of observation, subsystems of speech production and swallowing, and applications of data.

Levels of Observation

Speech production and swallowing are processes. They result in acoustic products (more so for speech than swallowing) and perceptual experiences. These processes, products, and experiences involve different levels of observation. Six such levels are represented in Figure 1–1: (a) neural, (b) muscular, (c) structural, (d) aeromechanical, (e), acoustic, and (f) perceptual.

The neural level of observation encompasses nervous system events during speech production and swallowing. These include all events that qualify as motor planning and execution and all forms of afferent and sensory information that influence the ongoing control of speech production and swallowing. The neural level of observation pertains to the parts of...
Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception

The brain, spinal cord, and cranial and spinal nerves important to speech production and swallowing and to all underlying neural mechanisms, some voluntary and some automatic, some that involve awareness, and some that do not. Neural data are often derived from physical or metabolic imaging methods that reflect patterns of activation of different regions of the brain. Activation at the neural level can also be inferred from events associated with other (downstream) levels of observation.

The muscular level of observation is concerned with the influence of muscle forces on speech production and swallowing. Muscle forces are responsible for powering these two processes. Muscles are effectors that respond to control signals from the nervous system. The muscular events of speech production and swallowing are manifested in mechanical pulls and are often indexed at the periphery through the electrical activities associated with muscle contractions. Inferences about muscle activities are also made from measurements of the forces or movements generated by different parts of the speech production apparatus and swallowing apparatus. Nevertheless, there are ambiguities introduced when attempting to infer individual muscle activities from forces or movements because forces and movements are usually accomplished by groups of muscles working together. Such inferences, if they can be made at all, require a detailed knowledge of anatomy and physiology.

The structural level of observation deals with movements of the speech production apparatus and swallowing apparatus. This level of observation is concerned with the displacements, velocities, and accelerations of structures and how they are timed in relation to the movements of other structures. Certain structural observations can be made with the naked eye, whereas others are hidden from view or are too rapid to be followed with the naked eye and require the use of instrumental monitoring. To the person on the street, the structural level of observation is public evidence of speech production and swallowing. Speech reading (lip reading) has its roots at this level of observation.

The structural movements of speech production and swallowing give rise to an aeromechanical level of observation. It is at this level that air comes into play. Movements of structures impart energy to the air by compressing and decompressing it and causing it to flow from one region to another. The raw airstream generated in association with the aeromechanical level is modified by structures of the speech production apparatus and swallowing apparatus that lie along various passageways. The products of the aeromechanical level are complex, rapid, and nearly continuous changes in air pressures, airflows, and air volumes. These products are usually “invisible,” especially for swallowing. However, those who speak and smoke at the same time or who speak in subfreezing temperatures often provide the observer with the opportunity to visualize certain aeromechanical events.

The acoustic level of observation is fully within the public domain. Although certain aspects of swallowing may be accompanied by sounds, primacy at this level pertains to the generation of speech sounds. The raw material of the acoustic level is the buzzlike, hisslike, and poplike sounds that result from the speaker’s valving of the airstream in different ways and at different locations within the speech production apparatus. This raw material is filtered and conditioned by its passage through the apparatus and radiates from the mouth or nose, or both, in the form of nearly continuous changes in atmospheric pressure. The sound waves that are formed propagate spherically from the speaker and can be coded in terms of frequency, sound pressure level, and time. These sound waves are what constitute speech, an acoustic representation of language. The acoustic level is important in face-to-face
communication and in the use of telephones, radios, televisions, and various forms of recording. It is this level that makes it possible for many listeners to be engaged simultaneously and makes it possible to communicate effectively around corners, through obstacles, in the dark, and over long distances.

The perceptual level of observation has somewhat different manifestations for speech production and swallowing. For speech production, it pertains primarily to auditory events. Kinesthesia (movement sensation), proprioception (position-in-space sensation), and touch-pressure sensation are important as bases for staying informed about ongoing speech production events, but the principal factor is audition (hearing sensation). Visual information is sometimes important as well, and experience and knowledge of the language is critical for extracting meaning from speech. In contrast, swallowing is highly dependent on kinesthesia, touch-pressure sensation, and even taste, with relatively little reliance on auditory or visual information. Cognitive processes contribute to various degrees at the perceptual level of observation for both speech production and swallowing.

The levels of observation portrayed in Figure 1–1 are not completely separate entities, but have important interactions. These interactions are not shown in the figure, but are discussed in subsequent chapters.

Subsystems of Speech Production and Swallowing

The speech production apparatus and the swallowing apparatus perform different activities. However, they share many structural and functional components and, although different in their control and movement, can be viewed along similar lines. It is convenient, for discussion purposes, to partition the speech production apparatus and swallowing apparatus into subsystems. Speech production subsystems may differ when chosen by a linguist versus a speech scientist versus a speech-language pathologist. And swallowing subsystems may differ when chosen by a swallowing scientist versus a gastroenterologist versus a speech-language pathologist. For the purposes of this book, four subsystems are used for speech production and swallowing. As illustrated in Figure 1–1, these include the: (a) breathing apparatus, (b) laryngeal apparatus, (c) velopharyngeal-nasal apparatus, and (d) pharyngeal-oral apparatus. The role of each of these subsystems is considered in detail in subsequent chapters. The functional significance of each of the four subsystems differs between speech production and swallowing, but each subsystem is critically important to its respective behaviors and each manifests in clinical signs that can reveal abnormality.

The breathing apparatus is defined in the present context to include structures below the larynx within the neck and torso. These are, most importantly, the pulmonary apparatus (pulmonary airways and lungs) and chest wall apparatus (rib cage wall, diaphragm, abdominal wall, and abdominal content). During speech production, the breathing apparatus provides the necessary driving forces, while simultaneously serving the functions of ventilation and gas exchange. During swallowing, the breathing apparatus engages in a period of apnea (breath holding) to protect the pulmonary airways and lungs from the intrusion of unwanted substances (food and liquid). The breathing apparatus is the largest of the subsystems and its role in speech production and swallowing is fundamentally important.

The laryngeal apparatus lies between the trachea (windpipe) and the pharynx (throat) and adjusts the coupling between the two. At times, the laryngeal airway is open to allow air to move in and out of the breathing apparatus, whereas at times it is adjusted to obstruct or constrict the airway. During speech production, obstructions and constrictions enable the generation of transient and sustained noises, respectively. Very rapid to and fro movements of the vocal folds within the larynx create voiced sounds and give the laryngeal apparatus its colloquial label “voice box.” During swallowing, the laryngeal apparatus is active in closing the laryngeal airway to protect the pulmonary airways. Food and liquid are then able to pass over and around the larynx and into the esophagus on their way to the stomach.

The velopharyngeal-nasal apparatus consists of the upper pharynx, velum, nasal cavities, and outer nose. When breathing through the nose, the velopharyngeal-nasal airway is open. When speaking, the size of the velopharyngeal port varies, depending on the nature of the speech produced. For example, consonant sounds that require high oral air pressure are typically associated with airtight closure of the velopharyngeal port, whereas nasal consonants are produced with an open velopharyngeal port. Function of the velopharyngeal-nasal apparatus during swallowing is concerned mainly with keeping the velopharynx sealed airtight. This prevents the passage of food and liquid into the nasal cavities, while substances are moved backward and downward through the oropharynx.

The pharyngeal-oral apparatus comprises the middle and lower pharynx, oral cavity, and oral vesti-
bule. During running speech production, the apparatus is typically open during inspiration and makes different adjustments for consonant and vowel productions during expiration, including the generation of transient, voiceless, and voiced sounds and the filtering of those sounds. During swallowing, the pharyngeal-oral apparatus prepares food and liquid and propels it to the esophagus.

Applications of Data

There are many applications of data obtained about speech production and swallowing. These applications depend on who selects and defines the data and what the goals are for collecting and analyzing them. For the purposes of this book, applications of data are categorized into four areas: (a) mechanism, (b) evaluation, (c) management, and (d) forensics. These are shown in Figure 1–1.

One application of data is the understanding of mechanism. This use provides the foundational bases for knowing how speech is produced and how swallowing is performed. Such foundational bases are important for their heuristic value in elucidating fundamental processes and working principles and for differentiating normal from abnormal.

Another application of data is its use in evaluation. This use is usually practical in nature and involves quantitative determinations of the status and functional capabilities of an individual’s speech production, speech, and swallowing. Evaluation first enables a determination as to whether or not abnormality exists. If abnormality does exist, then appropriate evaluation may contribute to: (a) making a diagnosis, (b) developing a rational, effective, and efficient management plan, (c) monitoring progress during the course of management, and (d) providing a reasonable prognosis as to the extent and speed of improvement to be expected. For example, a specific use of subsystems analysis in the evaluation of speech production is the determination of how individual subsystems contribute to deficits in speech intelligibility. Two individuals may have equivalent intelligibility problems as determined by formal tests, but have different subsystems “explanations” for their deficits. The careful evaluation of subsystems performance can point to which parts of the speech production apparatus may be particularly responsible for speech intelligibility deficits, and how those parts should be addressed in management. Evaluation relies on an understanding of what constitutes normal function.

A third application of data is management. Different interventions may be based on any of the six levels of observation and include any of the four subsystems of speech production and swallowing. Different management strategies may include adjusting individual variables or combinations of variables, staging the order of different interventions, and providing feedback about speech production and swallowing processes, products, and experiences. Management data provide information about outcome and whether or not interventions are effective, efficient, and long-lasting. Management data can also be used to compare and contrast different interventions to arrive at optimal choices.

The remaining application of data is their use in forensics. This application is concerned with scientific facts and expert opinion as they relate to legal issues. The speech scientist and speech-language pathologist are sometimes called on to give legal depositions or to testify in courts of law in a variety of forensic contexts. Forensic uses of data may include issues pertaining to speaker identification, speaker status under the influence of drugs or alcohol, and speaker intent at deceit, among others. Forensic uses of data may also relate to personal injury claims or malpractice claims. These may involve speech production, speech, or swallowing alone, or in different combinations, and may include adversarial depositions and testimonies of other experts. Under such circumstances, the status and capabilities of the individuals claiming personal injury or malpractice may be considered from the perspective of underlying mechanism, evaluation, and management.

REVIEW

Preclinical Speech Science: Anatomy, Physiology, Acoustics, Perception is intended as an introduction to the fundamentals of speech science (inclusive of voice science) that are important to aspiring clinicians and practicing clinicians.

The text is suitable for different courses that cover anatomy and physiology of speech production and swallowing, and the acoustics and perception of speech.

The material in the text is strongly integrative and translational, applicable to both undergraduate and graduate students, and a source of continuing education and reference for practicing speech-language pathologists.
The domain of preclinical speech science encompasses different levels of observation, different subsystems of speech production and swallowing, and different applications of data.

Levels of observation include the neural, muscular, structural, aeromechanical, acoustic, and perceptual levels.

Subsystems of speech production and swallowing include the breathing apparatus, laryngeal apparatus, velopharyngeal-nasal apparatus, and pharyngeal-oral apparatus.

Applications of data include the understanding of mechanism, evaluation, management, and forensics.