PRECLINICAL SPEECH SCIENCE
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>xix</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xxi</td>
</tr>
<tr>
<td>REVIEWERS</td>
<td>xxiii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Focus of the Book</td>
<td>1</td>
</tr>
<tr>
<td>Domain of Preclinical Speech Science</td>
<td>1</td>
</tr>
<tr>
<td>Levels of Observation</td>
<td>1</td>
</tr>
<tr>
<td>Subsystems of Speech Production and Swallowing</td>
<td>3</td>
</tr>
<tr>
<td>Applications of Data</td>
<td>4</td>
</tr>
<tr>
<td>Domain of Preclinical Hearing Science</td>
<td>4</td>
</tr>
<tr>
<td>Levels of Observation</td>
<td>4</td>
</tr>
<tr>
<td>Subsystems of the Auditory System</td>
<td>5</td>
</tr>
<tr>
<td>Applications of Data</td>
<td>6</td>
</tr>
<tr>
<td>Review</td>
<td>7</td>
</tr>
<tr>
<td>2 BREATHING AND SPEECH PRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Anatomy of the Breathing Apparatus</td>
<td>9</td>
</tr>
<tr>
<td>Skeletal Framework</td>
<td>9</td>
</tr>
<tr>
<td>Breathing Apparatus and Its Subdivisions</td>
<td>10</td>
</tr>
<tr>
<td>Pulmonary Apparatus</td>
<td>10</td>
</tr>
<tr>
<td>Chest Wall</td>
<td>12</td>
</tr>
<tr>
<td>Pulmonary Apparatus–Chest Wall Unit</td>
<td>12</td>
</tr>
<tr>
<td>Forces of Breathing</td>
<td>13</td>
</tr>
<tr>
<td>Passive Force</td>
<td>13</td>
</tr>
<tr>
<td>Active Force</td>
<td>14</td>
</tr>
<tr>
<td>Muscles of the Rib Cage Wall</td>
<td>14</td>
</tr>
<tr>
<td>Muscle of the Diaphragm</td>
<td>17</td>
</tr>
<tr>
<td>Muscles of the Abdominal Wall</td>
<td>17</td>
</tr>
<tr>
<td>Summary of Passive and Active Forces</td>
<td>20</td>
</tr>
<tr>
<td>Realization of Passive and Active Forces</td>
<td>22</td>
</tr>
<tr>
<td>Movements of Breathing</td>
<td>22</td>
</tr>
<tr>
<td>Movements of the Rib Cage Wall</td>
<td>23</td>
</tr>
<tr>
<td>Movements of the Diaphragm</td>
<td>25</td>
</tr>
<tr>
<td>Movements of the Abdominal Wall</td>
<td>25</td>
</tr>
<tr>
<td>Relative Movements of the Rib Cage Wall and Diaphragm–Abdominal Wall</td>
<td>25</td>
</tr>
<tr>
<td>Forces Underlying Movements</td>
<td>25</td>
</tr>
<tr>
<td>Control Variables of Breathing</td>
<td>27</td>
</tr>
<tr>
<td>Lung Volume</td>
<td>27</td>
</tr>
<tr>
<td>Alveolar Pressure</td>
<td>28</td>
</tr>
</tbody>
</table>
Chest Wall Shape 31

Neural Control of Breathing
- Control of Tidal Breathing 34
- Control of Special Acts of Breathing 36
- Peripheral Nerves of Breathing 37

Ventilation and Gas Exchange During Tidal Breathing 38

Breathing and Speech Production
- Extended Steady Utterances 40
- Running Speech Activities 44

Variables That Influence Speech Breathing
- Body Position 49
 - Extended Steady Utterances in the Supine Body Position 50
 - Running Speech Activities in the Supine Body Position 52
 - Speech Breathing in Other Body Positions 54
- Body Type 55
- Age 55
- Sex 57
- Ventilation and Drive to Breathe 57
- Cognitive-Linguistic and Social Variables 58

Review 59

References 60

3 LARYNGEAL FUNCTION AND SPEECH PRODUCTION 63

Introduction 63

Anatomy of the Laryngeal Apparatus 63
- Skeletal Framework 63
 - Thyroid Cartilage 63
 - Cricoid Cartilage 64
 - Arytenoid Cartilages 65
 - Epiglottis 66
 - Hyoid Bone 66
- Laryngeal Joints 66
 - Cricothyroid Joints 68
 - Cricoarytenoid Joints 69
- Internal Topography 72
 - Laryngeal Cavity 72
 - Vocal Folds 72
 - Ventricular Folds 75
 - Laryngeal Ventricles 75
 - Ligaments and Membranes 75

Forces of the Laryngeal Apparatus 77
- Intrinsic Laryngeal Muscles 78
- Extrinsic Laryngeal Muscles 82
- Supplementary Laryngeal Muscles 83
 - Infralhyoid Muscles 83
 - Supralhyoid Muscles 85
- Summary of the Laryngeal Muscles 85

Movements of the Laryngeal Apparatus 86
- Movements of the Vocal Folds 86
 - Vocal Fold Abduction 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movements of the Velopharyngeal-Nasal Apparatus</td>
<td>143</td>
</tr>
<tr>
<td>Movements of the Pharynx</td>
<td>143</td>
</tr>
<tr>
<td>Movements of the Velum</td>
<td>144</td>
</tr>
<tr>
<td>Movements of the Outer Nose</td>
<td>145</td>
</tr>
<tr>
<td>Control Variables of Velopharyngeal-Nasal Function</td>
<td>145</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Airway Resistance</td>
<td>145</td>
</tr>
<tr>
<td>Velopharyngeal Sphincter Compression</td>
<td>146</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Acoustic Impedance</td>
<td>147</td>
</tr>
<tr>
<td>Neural Substrates of Velopharyngeal-Nasal Control</td>
<td>148</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Functions</td>
<td>149</td>
</tr>
<tr>
<td>Coupling Between the Oral and Nasal Cavities</td>
<td>149</td>
</tr>
<tr>
<td>Coupling Between the Nasal Cavities and Atmosphere</td>
<td>150</td>
</tr>
<tr>
<td>Ventilation and Velopharyngeal-Nasal Function</td>
<td>151</td>
</tr>
<tr>
<td>Nasal Valve Modulation</td>
<td>151</td>
</tr>
<tr>
<td>Nasal Cycling (Side-to-Side)</td>
<td>152</td>
</tr>
<tr>
<td>Nasal-Oral Switching</td>
<td>152</td>
</tr>
<tr>
<td>Velopharyngeal-Nasal Function and Speech Production</td>
<td>152</td>
</tr>
<tr>
<td>Sustained Utterances</td>
<td>152</td>
</tr>
<tr>
<td>Running Speech Activities</td>
<td>154</td>
</tr>
<tr>
<td>Variables that Influence Velopharyngeal-Nasal Function</td>
<td>156</td>
</tr>
<tr>
<td>Body Position</td>
<td>156</td>
</tr>
<tr>
<td>Age</td>
<td>157</td>
</tr>
<tr>
<td>Sex</td>
<td>159</td>
</tr>
<tr>
<td>Review</td>
<td>160</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
</tbody>
</table>

5 PHARYNGEAL-ORAL FUNCTION AND SPEECH PRODUCTION 165

Introduction 165

Anatomy of the Pharyngeal-Oral Apparatus 165

Skeletal Framework 165

Maxilla 165
Mandible 166
Temporomandibular Joints 167

Internal Topography 170
Pharyngeal Cavity 170
Oral Cavity 170
Buccal Cavity 172
Mucous Lining 172

Forces of the Pharyngeal-Oral Apparatus 172

Muscles of the Pharynx 172
Muscles of the Mandible 173
Muscles of the Tongue 175
Muscles of the Lips 178

Movements of the Pharyngeal-Oral Apparatus 182

Movements of the Pharynx 183
Movements of the Mandible 183
Movements of the Tongue 184
Movements of the Lips 184

Control Variables of Pharyngeal-Oral Function 186
Pharyngeal-Oral Lumen Size and Configuration 186
Introduction

Pressure Waves

The Motions of Vibrating Air Molecules Are Governed by Simple Forces
The Motions of Vibrating Air Molecules Change the Local Densities of Air
Pressure Waves, Not Individual Molecules, Propagate Through Space and Vary as a Function of Both Space and Time
The Variation of a Pressure Wave in Time and Space Can Be Measured

Temporal Measures
Spatial Measures
Wavelength and Direction of Sound
Pressure Waves: A Summary and Introduction to Sinusoids

Sinusoidal Motion

Sinusoidal Motion (Simple Harmonic Motion) Is Derived from the Linear Projection of Uniform Circular Speed
When the Linear Projection of Uniform Circular Speed Is Stretched Out in Time, the Result Is a Sine Wave
Sinusoidal Motion Can Be Described by a Simple Formula and Has Three Important Characteristics: Frequency, Amplitude, and Phase
Sinusoidal Motion: A Summary

Complex Acoustic Events

Complex Periodic Events have Waveforms That Repeat Their Patterns Over Time and Are Composed of Harmonically Related Frequency Components
A Complex Periodic Waveform Can Be Considered as the Sum of the Individual Sinusoids at the Harmonic Frequencies
Complex Aperiodic Events have Waveforms in Which no Repetitive Pattern Can Be Discerned, and Frequency Components That Are Not Harmonically Related
Complex Acoustic Events: A Summary

Resonance

Mechanical Resonance
A Spring-Mass Model of Resonance
The Relative Values of Mass (M) and Elasticity (K) Determine the Frequency of Vibration of the Spring-Mass Model
The Effects of Mass and Stiffness (Elasticity) on a Resonant System: A Summary
Acoustic Resonance: Helmholtz Resonators
The Neck of the Helmholtz Resonator Contains a Column, or Plug of Air, That Behaves Like a Mass When a Force Is Applied to It
The Bowl of a Resonator Contains a Volume of Air That Behaves Like a Spring When a Force Is Applied to It
Acoustic Resonance: Tube Resonators
Resonance in Tubes: A Summary
Resonance Curves, Damping, and Bandwidth
Energy Loss (Damping) in Vibratory Systems Can Be Attributed to Four Factors
8 ACOUSTIC THEORY OF VOWEL PRODUCTION

Introduction

What Is the Precise Nature of the Input Signal Generated by the Vibrating Vocal Folds?
- The Time Domain
- The Frequency Domain
 - The Periodic Nature of the Waveform
 - The Shape of the Waveform
 - The Ratio of Open Time to Closed Time
- Nature of the Input Signal: A Summary

Why Should the Vocal Tract Be Conceptualized as a Tube Closed at One End?
- The Response of the Vocal Tract to Excitation
- How Are the Acoustic Properties of the Vocal Tract Determined?
- Area Function of the Vocal Tract

How Does the Vocal Tract Shape the Input Signal? (How Is the Source Spectrum Combined with the Theoretical Vocal Tract Spectrum to Produce a Vocal Tract Output?)
- Formant Bandwidths
- Acoustic Theory of Vowel Production: A Summary

What Happens to the Resonant Frequencies of the Vocal Tract When the Tube Is Constricted at a Given Location?
- The Three-Parameter Model of Stevens and House
 - Tongue Height
 - Tongue Advancement
 - Configuration of the Lips
- Importance of the Stevens and House Rules: A Summary
 - The Connection Between the Stevens and House Rules and Perturbation Theory
 - Why Are the Stevens and House Rules Important?
 - Another Take on the Relationship Between Vocal Tract Configuration and Vocal Tract Resonances
- Confirmation of the Acoustic Theory of Vowel Production
 - Analog Experiments
 - Human Experiments

References

9 THEORY OF CONSONANT ACOUSTICS

Introduction

Why Is the Acoustic Theory of Speech Production Most Accurate and Straightforward for Vowels?

The Acoustics of Coupled (Shunt) Resonators and Their Application to Consonant Acoustics
- Nasal Murmurs
 - Energy Loss in the Nasal Cavities, Antiresonances, and the Relative Amplitude of Nasal Murmurs

References
Nasal Murmurs: A Summary 335
Nasalization 335
Nasalization: A Summary 338
The Importance of Understanding Nasalization 338
Coupled (Shunt) Resonators in the Production of Lateral Sounds 339
Coupled (Shunt) Resonators in the Production of Obstruent Sounds 339

What Is the Theory of Fricative Acoustics? 341
Fluid Flow in Pipes and Source Types 341
Aeromechanic/Acoustic Effects in Fricatives: A Summary 344
A Typical Fricative Waveform and Its Aeromechanical Correlates 345
Mixed Sources in Fricative Production 346
Shaping of Fricative Sources by Vocal Tract Resonators 346
Measurement of Fricative Acoustics 349
Spectral Measurements 349
Temporal Measurements 350
The Acoustic Theory of Fricatives: A Summary 351

What Is the Theory of Stop Acoustics? 351
Intervals of Stop Consonant Articulation: Aeromechanics and Acoustics 353
Closure (Silent) Interval 353
Release (Burst) Interval 354
Frication and Aspiration Intervals 355
Voice-Onset Time 356
Shaping of Stop Sources by Vocal Tract Resonators 356
The Nature of Stop Sources 357
The Shaping of Stop Sources 357
Measurement of Stop Acoustics 358
Spectral Measurements 359
Temporal Measurements 359
Stop Consonants: A Summary 359

What Is the Theory of Affricate Acoustics? 360
Acoustic Contrasts Associated with the Voicing Distinction in Obstruents 360
Review 361
References 361

10 SPEECH ACOUSTIC MEASUREMENT AND ANALYSIS 363
Introduction 363
A Historical Prelude 363
The Sound Spectrograph: History and Technique 369
The Original Sound Spectrograph: Summary 372
Interpretation of Spectrograms: Specific Features 373
Axes 373
Glottal Pulses 375
Formant Frequencies 375
Silent Intervals and Stop Bursts 376
Aperiodic Intervals 378
Segmentation of Spectrograms 379
Speech Acoustics Is Not All About Segments: Suprasegmentals 382
Digital Techniques for Speech Analysis 384
Speech Analysis by Computer: From Recording to Analysis to Output 384
Sampling Rate 385
11 ACOUSTIC PHONETICS DATA 391

Introduction 391

Vowels 391

Vowel Acoustics: Dialect and Cross-Language Phonetics 398
Within-Speaker Variability in Formant Frequencies 401
Summary of Vowel Formant Frequencies 403
A Note on Vowel Formant Frequencies Versus Formant Trajectories 404
Vowel Durations 406

Intrinsic Vowel Durations 406
Extrinsic Factors Affecting Vowel Durations 407

Diphthongs 409
Diphthongs: Two Connected Vowels or a Unique Phoneme? 410
Diphthong Duration 412

Nasals 412
Nasal Murmurs 412
Nasal Place of Articulation 415
Nasalization 418

Semivowels 421

Constriction Interval 421
Formant Transitions 422
Semivowel Acoustics and Speech Development 423
Semivowel Durations 424

Fricatives 425

Sibilants Versus Nonsibilants: Spectral Characteristics 425
Quantification of Fricative Spectra 426
Formant Transitions and Fricative Distinctions 431
Fricative Duration 432
Laryngeal Devoicing Gesture and Fricative Duration 435

/h/ Acoustics 436

Stops 438

Closure Interval and Burst 439
Closure Interval Duration 439
Flap Closures 440
Closure Duration and Place of Articulation 441
Stop Voicing: Some Further Considerations 441
Laryngeal Devoicing Gesture, Stop Closures, and Voice Onset Time 441

Bursts 445
Acoustic Invariance for Stop Place of Articulation 446
Acoustic Invariance and Theories of Speech Perception 449
Locus Equations 450
Acoustic Invariance at the Interface of Speech Production and Perception 452

Affricates 453

Acoustic Characteristics of Prosody 454
Phrase-Level F0 Contours 454
12 SPEECH PERCEPTION

Introduction

Early Speech Perception Research and Categorical Perception

The /ba/-/da/-/ga/ Experiment

Categorical Perception: General Considerations

Labeling Versus Discrimination

Categorical Perception: So What?

Speech Perception Is Species Specific

The Motor Theory of Speech Perception: Proofs and Falsifications

Categorical Perception of Stop Place of Articulation Shows the “Match” to Speech Production

Duplex Perception

Acoustic Invariance

The Competition: General Auditory Explanations of Speech Perception

Sufficient Acoustic Invariance

Replication of Speech Perception Effects Using Nonspeech Signals

Animal and Infant Perception of Speech Signals

The Competition: Direct Realism

Vowel Perception

Motor Theory (Original and Revised)

Auditory Theories

Normalization

Direct Realism

A Summary of Speech Perception Theories

Speech Perception and Word Recognition

Speech Intelligibility

“Explanatory” Speech Intelligibility Tests

Scaled Speech Intelligibility

Phonetic Transcription

Why Should Speech-Language Pathologists and Audiologists Care About Speech Perception?

Review

References

13 ANATOMY AND PHYSIOLOGY OF THE AUDITORY SYSTEM

Introduction

Temporal Bone

Peripheral Anatomy of the Auditory System

Outer Ear (Conductive Mechanism)

Pinna (Auricle)

External Auditory Meatus (External Auditory Canal)

Tympanic Membrane (Eardrum)

Middle Ear (Conductive Mechanism)

Chambers of the Middle Ear

Ossicles and Associated Structures
15 NEURAL STRUCTURES AND MECHANISMS FOR SPEECH, LANGUAGE, AND HEARING

Introduction 579

The Nervous System: An Overview and Concepts 579
 Central Versus Peripheral Nervous System 579
 Autonomic Nervous System 580
 Anatomical Planes and Directions 581
 White and Gray Matter, Tracts and Nuclei, Nerves and Ganglia 584
 Gray Matter and Nuclei 584
 White Matter and Fiber Tracts 585
 Ganglia 585
 Efferent and Afferent 585
 Neurons and Synapses 586
 Lateralization and Specialization of Function 586

Cerebral Hemispheres and White Matter 589
 Cerebral Hemispheres 589
 Frontal Lobe 590
 Parietal Lobe 593
 Temporal Lobe 594
 Occipital Lobe 596
 Insula 596
 Limbic System (Limbic Lobe) 597
 Cerebral White Matter 597
 Association Tracts 598
 Striatal Tracts 601
 Commissural Tracts 601
 Descending Projection Tracts 602
 Ascending Projection Tracts 606

Subcortical Nuclei and Cerebellum 607
 Basal Ganglia 607
 Cortico-Striatal-Cortical Loop 610
 Role of Basal Ganglia 611
 Thalamus 612
 Cerebellum 612
 Cortico-Cerebellar-Cortical Loop 613
 Role of Cerebellum 613
 Cerebellum and Basal Ganglia: New Concepts 614

Brainstem and Cranial Nerves 615
 Surface Features of the Brainstem: Ventral View 615
 Ventral Surface of Midbrain 616
 Ventral Surface of Pons 617
 Ventral Surface of Medulla 617
 Surface Features of the Brainstem: Dorsal View 617
 Dorsal Surface of Midbrain 617
 Dorsal Surface of Pons 619
 Dorsal Surface of Medulla 619
 Cranial Nerves and Associated Brainstem Nuclei 619
 Cranial Nerve I (Olfactory) 622
 Cranial Nerve II (Optic) 622
Cranial Nerve III (Oculomotor) 622
Cranial Nerve IV (Trochlear) 622
Cranial Nerve V (Trigeminal) 623
Cranial Nerve VI (Abducens) 624
Cranial Nerve VII (Facial) 625
Cranial Nerve VIII (Auditory-Vestibular Nerve) 626
Cranial Nerve IX (Glossopharyngeal) 627
Cranial Nerve X (Vagus) 628
Cranial Nerve XI (Spinal Accessory Nerve) 629
Cranial Nerve XII (Hypoglossal) 629

Cortical Innervation Patterns 630
Why Innervation Patterns Matter 631
The Cranial Nerve Exam and Speech Production 633

Spinal Cord and Spinal Nerves 633
Spinal Cord 633
Spinal Nerves 635

Nervous System Cells 636
Glial Cells 636
Neurons 636
Cell Body (Soma) 637
Axon and Terminal Button 639
Synapses 639
Resting Potential, Action Potential, and Neurotransmitters 640
Resting Potential 640
Action Potential 642
Synaptic Transmission and Neurotransmitters 644
Neuromuscular Junction 645

Meninges, Ventricles, Blood Supply 647
Meninges 647
Dura Mater 648
Arachnoid Mater 649
Pia Mater 649
Meninges and Clinically Relevant Spaces 650
Ventricles 650
Lateral Ventricles 651
Third Ventricle 651
Cerebral Aqueduct, Fourth Ventricle, and Other Passageways for CSF 652
Production, Composition, and Circulation of CSF 652
Blood Supply of Brain 652
Anterior Circulation 652
Posterior Circulation 654
Circle of Willis 654
MCA and Blood Supply to the Dominant Hemisphere 655
Blood–Brain Barrier 658

Speech and Language Functions of the Brain: Possible Sites and Mechanisms 659
Network View of Brain Function 659
DIVA 659
DIVA: Speech Sound Map (lvPMC) 661
DIVA: Articulatory Velocity/Position Maps (PMC) 662
16 SWALLOWING

Introduction

Anatomy

- Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures
- Esophagus
- Stomach

Forces and Movements of Swallowing

- Oral Preparatory Phase
- Oral Transport Phase
- Pharyngeal Phase
- Esophageal Phase
- Overlap of Phases

Breathing and Swallowing

Neural Control of Swallowing

- Role of the Peripheral Nervous System
- Role of the Central Nervous System

Variables That Influence Swallowing

- Bolus Characteristics
 - Consistency and Texture
 - Volume
 - Taste
- Swallowing Mode
 - Single Versus Sequential Swallows
 - Cued Versus Uncued Swallows
- Body Position
- Development
- Aging
- Sex

Measurement and Analysis of Swallowing

- Videofluoroscopy
- Endoscopy
- Manometry
- Surface Electromyography
- Ultrasonography
- Aeromechanical Observations
- Client Self-Report

Health Care Professionals

Review

References

NAME INDEX

SUBJECT INDEX
The third edition of *Preclinical Speech Science* is a carefully revised and expanded version of the second edition of the textbook. The revised parts include line-by-line edits of all chapters from the second edition for greater clarity, removal of certain sections (several of which are available as supplementary materials on the textbook companion website, including the scenarios of the previous edition), and addition of new material to chapters from the second edition, including text, figures, and recent references from the research literature.

This new edition also contains three new chapters, including Chapter 6 (“Speech Physiology Measurement and Analysis”), Chapter 13 (“Auditory Anatomy and Physiology”), and Chapter 14 (“Auditory Psychophysics”). Chapter 6 was added to complement Chapter 10 (“Speech Acoustic Measurement and Analysis”) and Chapters 13 and 14 were added in response to suggestions made by colleagues and students, that this textbook would benefit from chapter-length material on Hearing Science. With the inclusion of these two chapters on hearing science, perhaps a more accurate title for the textbook would be *Preclinical Speech and Hearing Science*. Because this is the third edition of the text, we have chosen to retain the original title to be consistent with the previous editions.

The Workbook accompanying the third edition of this textbook has also been updated with complete sets of problems and exercises for the three new chapters, and revised exercises for all other chapters. The Workbook is a self-study resource, complete with answers to the problems and exercises.

A PluralPlus companion website also accompanies this new edition of *Preclinical Speech Science*. The website has supplementary text and figures, sound files, study guides, and instructor lecture slides.
the thyroid cartilage and diverge widely (more so in women than in men) toward the back. The configuration of the two thyroid laminae resembles the bow of a ship. The line of fusion between the two plates is called the angle of the thyroid. The upper part of the structure contains a prominent V-shaped depression termed the thyroid notch that can be palpated at the front of the neck. This notch is located just above the most forward projection of the cartilage, an outward jutting called the thyroid prominence or Adam’s apple.

The back edges of the thyroid laminae extend upward into two long horns, called the superior cornua, and downward into two short horns, called the inferior cornua. The superior cornua are coupled to the hyoid bone. The inferior cornua have facets (areas where other structures join) on their lower inside surfaces that form joints with the cricoid cartilage. The inferior cornua straddle the cricoid cartilage like a pair of legs (see Figure 3–1).

Cricoid Cartilage

The cricoid cartilage forms the lower part of the laryngeal skeleton. It is a ring-shaped structure located above the trachea. As shown in Figure 3–3, the cricoid cartilage has a thick plate at the back, the posterior quadrate lamina, which resembles a signet on a finger ring. A semicircular structure, called the anterior arch, forms the front of the cricoid cartilage and is akin to a band on a finger ring.

Four facets are located on the cricoid cartilage. The lower two facets, one on each side at the same level, are positioned near the junction of the posterior quadrate lamina and anterior arch. Each of these facets articulates with a facet on one of the inferior cornua.
provides a large surface area to the inner nose and has a rich blood supply. Near the front of each nasal cavity is the nasal vestibule, a modest dilation just inside the aperture of the anterior naris.

There are four sinuses (hollows) that surround the nasal cavities. Called the paranasal sinuses, they include the maxillary, frontal, ethmoid, and sphenoid sinuses, each located within the bone of corresponding name. Three of these are shown in Figure 4–8. The sphenoid, not pictured, is located behind and above the superior nasal conchae within the sphenoid bone. They are usually air filled but can become liquid filled when infected. Their relevance to speech is primarily related to their effects on the resonance characteristics of the acoustic signal during nasal sound production (see Chapter 9).

Outer Nose

Unlike the other components of the velopharyngeal-nasal apparatus, the outer nose is familiar to everyone. The outer nose is hard to ignore because it is in the center of the face and projects outward and downward conspicuously. The more prominent surface features of the outer nose include the root, bridge, dorsum, apex,

Figure 4–7. Superior, middle, and inferior nasal conchae (also called nasal turbinates). These conchae contain many nooks and crannies and create a large surface area to the inner nose.

Figure 4–8. The paranasal sinuses. Shown in this figure are the maxillary, frontal, and ethmoid sinuses. Not shown are the paired sphenoid sinuses, which are located behind and above the superior nasal conchae.
airway-opening airflow to calculate laryngeal airway resistance. As shown in Figure 6–12, measurements are taken at moments that enable estimates to be made of the air pressure difference across the larynx and the airflow through it during vowel productions. Resistance is calculated by dividing the air pressure difference (estimated tracheal air pressure minus estimated pharyngeal air pressure) by the translaryngeal airflow (estimated from the airflow at the airway opening). Resistance values are typically expressed in cmH₂O/LPS (centimeters of water/liters per second) and can range from very low (wide open airway) to infinite (airtight closure of the airway). Such resistance values reflect the degree of opening of the laryngeal airway during voice production (Holmberg, Hillman, & Perkell, 1988, 1999; Leeper & Graves, 1984; Smitheran & Hixon, 1981).

Phonation threshold pressure is another aeromechanical measure that can provide information about laryngeal function, or more specifically, vocal fold function. Phonation threshold pressure is defined as the minimum tracheal pressure required to initiate vocal fold vibration and is understood to reflect the status of the vocal folds (viscosity and thickness) and their distance from one another (glottal width) (Titze, 1988). Although there are invasive ways to measure phonation threshold pressure, the most common way to estimate it is by using the noninvasive approach depicted in Figure 6–7, with the client producing the /p/-vowel syllable strings in the quietest voice possible (Verdolini-Marston, Titze, & Druker, 1990). The lower the peak oral pressures during /p/ productions (estimated tracheal pressure), while still maintaining voicing during the vowel segments, the lower the phonation threshold pressure. And the lower the phonation threshold pressure, the healthier vocal fold function is judged to be. Although this measure is relatively easy to obtain, it is not without its limitations. For example, it is common

Figure 6–11. A flow recorded at the airway opening during vowel production. The black tracings show the fast airflow events associated with each cycle of vocal fold vibration. The red tracings represent the average airflow obtained by low-pass filtering the black airflow signal (to filter out high-frequency airflow events). The bottom set of tracings are a zoomed-in image from the upper set of tracings. The fundamental frequency is about 100 Hz (courtesy of Brad Story).
Figure 9-4. Spectra for the vowels /a/, /ɛ/, /u/, and /i/ for non-nasalized (blue curves) and nasalized (red curves) productions. Frequency is plotted between 0 and 1300 Hz on the x-axis and relative amplitude, in dB, is plotted on the ordinate. NR = nasal resonance. AR = antiresonance. F10 = F1 of non-nasalized vowel. F1 = F1 of nasalized vowel. For each vowel except /i/, there is a nasal resonance-antiresonance-F1 pattern in the nasalized spectra. In the case of /i/, the nasal resonance is canceled by the antiresonance because of the small coupling (small velopharyngeal port opening) between the oral and nasal cavities. From “Some acoustical and perceptual correlates of nasal vowels,” by K. Stevens, G. Fant, and S. Hawkins in In Honor of Ilse Lehiste (p. 246), edited by R. Channon and L. Shockey, 1987, Dordrecht, Netherlands: Foris. Copyright 1987 by Foris. Modified and reproduced with permission.
glottal pulse of the following vowel, negative VOT values represent the time by which glottal pulses within the closure interval precede the burst.

Both positive and negative VOT values are common in voiced stop production. As noted above, negative VOTs are associated with stops produced in the utterance-initial position (no speech sounds preceding the stop); intervocalic voiced stops often have glottal pulses during the closure interval, but these are not considered prevoiced. When voiced stops have glottal pulses that are not continuous throughout the closure interval, the VOT is often positive, but very short, as shown in Figure 11–30. The prevoiced, voiced stops reported by Lisker and Abramson all had VOTs more negative than −30 ms, the last negative value on the continuum shown in Figure 11–30.

Figure 11–30 shows a vertical dotted line at 25 ms along the VOT continuum. This line designates a boundary between typical positive VOTs for voiced and voiceless stops. Voiceless stops can be expected to have VOTs exceeding 25 ms (long-lag VOTs), whereas voiced stops have VOTs less than 25 ms (short-lag VOTs) (Weismer, 2006).

The boxes above the VOT continuum and to the right of the 25 ms boundary identify factors that cause VOT to vary in systematic ways. These boxes are in the long-lag range of the VOT continuum because the effects are most prominent for voiceless stops, with much smaller effects on the short-lag VOTs of voiced stops. VOT is affected by the position of a voiceless stop relative to a stressed vowel. Longer VOTs are measured when the stop precedes, compared with follows, a stressed vowel. The box containing the VCV frame has been placed to the right (longer VOTs) of the ’VCV box to indicate this effect. In fact, VOTs for voiceless stops in V’CV frames may be so short as to place them in the short-lag range (Úmeda, 1977). The effect of speaking rate on VOT, indicated in Figure 11–30 by the box and arrows immediately above the stress effects, are predictable from the direction of rate change. Slower rates produce longer VOTs for voiceless stops (shown by the arrow pointing to the right), and faster rates produce shorter VOTs for voiceless stops (left-pointing arrow) (Kessinger & Blumstein, 1997). The reduction (shortening) of long-lag VOTs at very fast speaking rates is rarely so dramatic as to encroach on the short-lag range (Kessinger & Blumstein, 1997; Summerfield, 1975). Finally, the topmost box indicates that speaking style affects the value of long-lag VOTs. Longer VOTs for voiceless stops are produced in more formal speaking styles, sometimes referred to as citation form or “clear” speech (Krause & Braida, 2004; Smiljanic & Bradlow, 2005). Casual speech styles yield shorter VOTs. The difference between formal and casual speaking styles is likely to involve a difference in speaking rate. Formal speaking styles typically have slower rates than casual styles (Picheny et al., 1986).

A special case of VOT modification for voiceless stops is indicated by the “sCV” box above the short-lag range. “sCV” stands for prestressed s + stop clusters, in words such as “stop,” “skate,” “speech,” “astounding.” Voiceless stops in s + stop clusters have short-lag

Figure 11–30. Graphic summary of VOT data from English speakers. A VOT continuum ranging from −30 to +50 ms is shown, and effects are indicated by the phonetic symbols and boxes above the continuum line. See text for additional detail.
Cochlea is oriented in the head as if the tip is pointing along the horizontal axis. The back half of the cochlea is shown in this view. On either side of the center of the slice, two “triplets” of ducts are seen, one triplet at the base (labeled “basal turn” in the figure), the other just above it (labeled “middle turn”). The top triplet of ducts is at the apical turn of the cochlea, at the very tip of which the two outside ducts—the scala vestibuli and scala tympani—are connected. The center “core” section of the cut is called the modiolus (not labeled in Figure 13–16). The turns of the bony cochlea wrap around this center core as they spiral to the apex. The modiolus contains the nerve fibers that innervate the hair cells. It also contains ganglion cells where fibers emerging from the cochlea make their first synapse before continuing to the internal auditory meatus as the auditory part of the auditory-vestibular nerve.

From base to tip, the modiolus sends out two bony shelves toward the outer edges of the spiraling cochlea. These shelves are called the spiral lamina, whose bony extensions serve as the divider between the two outer ducts—the scala vestibuli and scala tympani (labeled only for the basal turns in Figure 13–16). The spiral lamina does not extend to the lateral, bony border of the cochlea. Rather, as described below, membranes extending from the end of the bony lamina to the inside of the lateral border of the cochlea create the third duct sitting between the scala vestibuli and scala tympani. This third duct is called the scala media, or alternately the cochlear duct. All three ducts are filled with fluid.

The second way to appreciate the structure of the cochlea is by studying a zoomed view of the ducts in the cochlea. The zoomed view of the bony cochlea in Figure 13–17 is from its basal turn. From top to bottom the ducts are the scala vestibuli, scala media, and scala tympani. At the beginning of the basal turn of the scala vestibuli, near the section shown in the figure, is the oval window. The termination of the basal turn of the scala tympani is the round window. The two membranes that extend from shelves of the spiral lamina to the outer edge of the cochlea, and enclose the scala media, are called Reissnër’s membrane (dividing the scala vestibuli from the scala media) and the basilar membrane (dividing the scala tympani from the scala...
to reveal the fibers of the corona radiata and internal capsule. Even though the internal capsule is the tightly gathered merger of the many fibers of the corona radiata, the internal capsule has an anterior, middle, and posterior part (IC = internal capsule in Figure 15–12, upper image). The precise location of a coronal slice therefore determines which part of the internal capsule is displayed. Like so many other parts of the brain, the internal capsule is not a random jumble of fibers, but is arranged systematically based on the cortical origin of the fibers. In a horizontal (axial) slice (inset, lower right of Figure 15–12; the anterior part of the brain is toward the top of the image) the internal capsule in each hemisphere has a boomerang shape with the “angle” of the boomerang most medial and the two arms extending away from this angle anterolaterally and posterolaterally. To provide a rough idea of the systematic arrangement of fibers within the internal capsule, most corticobulbar fibers associated with control of facial, jaw, tongue, velopharyngeal, and laryngeal muscles run through a compact bundle close to or within the angle (called the genu) of the internal capsule. Fibers descending to motor neurons in the spinal cord are mostly located in the posterior arm (called the
Figure 16-12. Simultaneous videofluoroscopy and pharyngeal high-resolution manometry of a 10 cc thin barium swallow from a 42-year-old healthy man (A) and a 67-year-old woman with dysphagia (B). High-resolution manometry sensors appear as black rectangles on the videofluoroscopy stills. Videofluoroscopy still images correspond to the time indicated by the vertical lines on the manometry plot with the same symbol at the top. In the data from the healthy man, pressures in the pharynx are low at rest (sensors 4–12: dark blue), whereas pressure is higher in the upper esophageal sphincter (sensors 13–14: light blue/green). During swallowing, the pharynx constricts, creating high pressures (orange/red) at the same time the upper esophageal sphincter relaxes (dark blue). The data from the woman with dysphagia reveals that she swallowed twice to clear the bolus, as indicated by the gap in the pressure wave (sensors 10–11: dark blue). Also note the area of elevated pressure in the upper esophageal sphincter (sensor 13: light blue/green) during opening. Courtesy of Timothy McCulloch, MD, and Corinne Jones, PhD, CCC-SLP.
Preclinical Speech Science Workbook
Contents

PREFACE vii

Questions 1

1 Introduction 1

2 Breathing and Speech Production 5

3 Laryngeal Function and Speech Production 37

4 Velopharyngeal-Nasal Function and Speech Production 67

5 Pharyngeal-Oral Function and Speech Production 95

6 Speech Physiology Measurement and Analysis 119

7 Acoustics 145

8 Acoustic Theory of Vowel Production 163

9 Theory of Consonant Acoustics 177

10 Speech Acoustic Measurement and Analysis 185

11 Acoustic Phonetics Data 199

12 Speech Perception 217

13 Anatomy and Physiology of the Auditory System 225

14 Auditory Psychophysics 239

15 Neural Structures and Mechanisms for Speech, Language, and Hearing 251

16 Swallowing 265
Answers

1 Introduction 278
2 Breathing and Speech Production 279
3 Laryngeal Function and Speech Production 291
4 Velopharyngeal-Nasal Function and Speech Production 301
5 Pharyngeal-Oral Function and Speech Production 311
6 Speech Physiology Measurement and Analysis 322
7 Acoustics 330
8 Acoustic Theory of Vowel Production 343
9 Theory of Consonant Acoustics 354
10 Speech Acoustic Measurement and Analysis 363
11 Acoustic Phonetics Data 376
12 Speech Perception 391
13 Anatomy and Physiology of the Auditory System 400
14 Auditory Psychophysics 411
15 Neural Structures and Mechanisms for Speech, Language, and Hearing 418
16 Swallowing 429

REFERENCES 435
Preface

The *Preclinical Speech Science Workbook, Third Edition* is a natural companion to the *Preclinical Speech Science, Third Edition* textbook. It has been carefully designed to help students reinforce, integrate, apply, and go beyond the material presented in the textbook.

The workbook contains a wide variety of activities. These include anatomic labeling, measuring physiologic and acoustic data, interpreting graphs, calculating quantitative problems, answering thought questions about material presented in the textbook, and conducting simple experiments (without the use of special equipment). The solutions to all these activities are provided at the back of the workbook; however, we strongly encourage students to work through each activity independently and refer to the solutions only when completely satisfied with their answers. This will provide the best learning experience and will help students make the transition from passive learners to active participants in their development toward becoming speech-language pathologists, audiologists, and clinical scientists.
3-3. Label the parts of the cricoid cartilage indicated in the figures.

a ___________________________ c ___________________________

b ___________________________ d ___________________________
4–6. Label the bones indicated in the figure.

(a) The two nasal cavities are separated from one another by the nasal ____________, which is made up of [Check one]

 _____ tendons and ligaments.

 _____ a matrix of soft tissue.

 _____ muscle.

 _____ cartilage and bone.

(b) The hard palate is made up of the ______________ bone and the ______________ bone.
6-21. The velopharyngeal orifice area can be estimated by a method developed by Warren and DuBois (1964; see Figure 6–15 in your textbook). Estimate the velopharyngeal orifice area using the formula and the values given below for oral pressure (P_1, in dynes/cm²), nasal pressure (P_2, in dynes/cm²), and nasal flow (in cubic centimeters per second, cc/s). The formula is:

\[
\text{Nasal airflow} \quad \frac{2 \text{ (Air pressure differential)}}{\text{Density of air}} = k \text{ Velopharyngeal port area}
\]

Note that dynes/cm² is a unit of measure for pressure that is much smaller than cmH₂O (specifically, 1 cmH₂O = 980 dynes/cm², so 1 dyne/cm² = 0.001 cmH₂O). Also, note that k is a constant that adjusts for the fact that airflow is often turbulent during speech production, rather than laminar (smooth). The suggested value for k is 0.65, density of air ≈ 0.001 (g/cm³), and the air pressure differential $= P_1 - P_2$.

Velopharyngeal orifice area is expressed in square centimeters (cm²). Calculate the velopharyngeal orifice area from the oral pressure, nasal pressure, and nasal flow values given below.

<table>
<thead>
<tr>
<th>Oral Pressure (P_1: dynes/cm²)</th>
<th>Nasal Pressure (P_2: dynes/cm²)</th>
<th>Nasal Flow (cc/s)</th>
<th>Velopharyngeal Orifice Area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Indicate which of the calculated values above best describes the velopharyngeal orifice area for:

- Sustained vowel with normal voice quality
- Sustained vowel with hypernasal voice quality
- Sustained /m/
13–30. When is the electrical potential of the hair cells of the organ of Corti and of the crista ampullaris changed?

13–31. The parts of the vestibular system that sense position of the head in the front-to-back and side-to-side dimensions are the ____________ and ____________, respectively. These two structures are part of the organ called the ________________.

13–32. The core of the cochlea is called the ____________, which contains ____________ originating at the base of the hair cells as well as the group of cell bodies called the ____________.

13–33. The membranes that separate the three cochlear ducts are ________________ and ________________.

13–34. In three sentences or less, describe the organ of Corti.