Preclinical Speech Science Workbook
Contents

PREFACE vii

Questions 1

1 Introduction 1

2 Breathing and Speech Production 5

3 Laryngeal Function and Speech Production 37

4 Velopharyngeal-Nasal Function and Speech Production 67

5 Pharyngeal-Oral Function and Speech Production 95

6 Speech Physiology Measurement and Analysis 119

7 Acoustics 145

8 Acoustic Theory of Vowel Production 163

9 Theory of Consonant Acoustics 177

10 Speech Acoustic Measurement and Analysis 185

11 Acoustic Phonetics Data 199

12 Speech Perception 217

13 Anatomy and Physiology of the Auditory System 225

14 Auditory Psychophysics 239

15 Neural Structures and Mechanisms for Speech, Language, and Hearing 251

16 Swallowing 265
Answers

1 Introduction 278
2 Breathing and Speech Production 279
3 Laryngeal Function and Speech Production 291
4 Velopharyngeal-Nasal Function and Speech Production 301
5 Pharyngeal-Oral Function and Speech Production 311
6 Speech Physiology Measurement and Analysis 322
7 Acoustics 330
8 Acoustic Theory of Vowel Production 343
9 Theory of Consonant Acoustics 354
10 Speech Acoustic Measurement and Analysis 363
11 Acoustic Phonetics Data 376
12 Speech Perception 391
13 Anatomy and Physiology of the Auditory System 400
14 Auditory Psychophysics 411
15 Neural Structures and Mechanisms for Speech, Language, and Hearing 418
16 Swallowing 429

REFERENCES 435
Preface

The Preclinical Speech Science Workbook, Third Edition is a natural companion to the Preclinical Speech Science, Third Edition textbook. It has been carefully designed to help students reinforce, integrate, apply, and go beyond the material presented in the textbook.

The workbook contains a wide variety of activities. These include anatomic labeling, measuring physiologic and acoustic data, interpreting graphs, calculating quantitative problems, answering thought questions about material presented in the textbook, and conducting simple experiments (without the use of special equipment). The solutions to all these activities are provided at the back of the workbook; however, we strongly encourage students to work through each activity independently and refer to the solutions only when completely satisfied with their answers. This will provide the best learning experience and will help students make the transition from passive learners to active participants in their development toward becoming speech-language pathologists, audiologists, and clinical scientists.
3-3. Label the parts of the cricoid cartilage indicated in the figures.

- a
- b
- c
- d
4-6. Label the bones indicated in the figure.

(a) The two nasal cavities are separated from one another by the nasal ________, which is made up of [Check one]

- tendons and ligaments.
- a matrix of soft tissue.
- muscle.
- cartilage and bone.

(b) The hard palate is made up of the __________ bone and the __________ bone.
6–21. The velopharyngeal orifice area can be estimated by a method developed by Warren and DuBois (1964; see Figure 6–15 in your textbook). Estimate the velopharyngeal orifice area using the formula and the values given below for oral pressure (P_1, in dynes/cm²), nasal pressure (P_2, in dynes/cm²), and nasal flow (in cubic centimeters per second, cc/s). The formula is:

$$
\text{Velopharyngeal port area} = \sqrt{\frac{2 \times (\text{Air pressure differential})}{\text{Density of air}}} \times k
$$

Note that dynes/cm² is a unit of measure for pressure that is much smaller than cmH₂O (specifically, $1 \text{ cmH}_2\text{O} = 980 \text{ dynes/cm}^2$, so $1 \text{ dyne/cm}^2 = 0.001 \text{ cmH}_2\text{O}$). Also, note that k is a constant that adjusts for the fact that airflow is often turbulent during speech production, rather than laminar (smooth). The suggested value for k is 0.65, density of air ≈ 0.001 (g/cm³), and the air pressure differential $= P_1 - P_2$.

Velopharyngeal orifice area is expressed in square centimeters (cm^2). Calculate the velopharyngeal orifice area from the oral pressure, nasal pressure, and nasal flow values given below.

<table>
<thead>
<tr>
<th>Oral Pressure (P_1; dynes/cm²)</th>
<th>Nasal pressure (P_2; dynes/cm²)</th>
<th>Nasal Flow (cc/s)</th>
<th>Velopharyngeal Orifice Area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Indicate which of the calculated values above best describes the velopharyngeal orifice area for:

- Sustained vowel with normal voice quality
- Sustained vowel with hypernasal voice quality
- Sustained /m/
13–30. When is the electrical potential of the hair cells of the organ of Corti and of the crista ampullaris changed?

13–31. The parts of the vestibular system that sense position of the head in the front-to-back and side-to-side dimensions are the ____________ and ____________, respectively. These two structures are part of the organ called the ____________.

13–32. The core of the cochlea is called the ____________, which contains ____________ originating at the base of the hair cells as well as the group of cell bodies called the ____________.

13–33. The membranes that separate the three cochlear ducts are ____________ and ____________.

13–34. In three sentences or less, describe the organ of Corti.