

Clinical Neuroscience for Communication Disorders

NEUROANATOMY AND NEUROPHYSIOLOGY

SECOND EDITION

Margaret Lehman Blake, PhD, CCC-SLP
Jerry K. Hoepner, PhD, CCC-SLP

9177 Aero Drive, Suite B
San Diego, CA 92123

email: information@pluralpublishing.com
website: <https://www.pluralpublishing.com>

Copyright © 2027 by Plural Publishing, Inc.

Typeset in 10.5/13 Adobe Garamond by Flanagan's Publishing Services, Inc.
Printed in China by Regent Publishing Services Ltd.

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by
Telephone: (866) 758-7251
Fax: (888) 758-7255
email: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publisher will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data:

Names: Blake, Margaret Lehman author | Hoepner, Jerry K. author
Title: Clinical neuroscience for communication disorders : neuroanatomy and neurophysiology / Margaret Lehman Blake, PhD, CCC-SLP, Jerry K. Hoepner, PhD, CCC-SLP.
Description: Second edition. | San Diego, CA : Plural Publishing, Inc, [2027] | Includes bibliographical references and index.
Identifiers: LCCN 2025019454 (print) | LCCN 2025019455 (ebook) | ISBN 9781635507812 hardcover | ISBN 1635507812 hardcover | ISBN 9781635505108 ebook
Subjects: LCSH: Neurophysiology | Neuroanatomy | Communicative disorders
Classification: LCC QP360 .B578 2027 (print) | LCC QP360 (ebook) | DDC 612.8--dc23/eng/20250708
LC record available at <https://lccn.loc.gov/2025019454>
LC ebook record available at <https://lccn.loc.gov/2025019455>

Contents

<i>Preface: How to Use This Textbook</i>	xx
<i>Acknowledgments</i>	xvii
<i>Reviewers of the First Edition</i>	xix

Chapter 1. Overview of the Nervous System	1
Learning Objectives	1
Overview	1
Major Components	2
Organization of the Nervous System	6
Organizational Systems	6
Cytoarchitecture Organization	7
Organization by Function	7
Terminology	10
Nervous System Cells	13
Neurons	13
Glial Cells	16
Structures and Landmarks	17
Lobes	22
Frontal Lobes	22
Parietal Lobes	22
Temporal Lobes	25
Occipital Lobes	27
Subcortical Structures	27
Basal Ganglia	27
Thalamus	29
Limbic System	29
Cerebellum	29
Brainstem	30
Summary	30
References	30
Chapter 2. Ventricular System: Cranium, Ventricle, and Meninges	33
Learning Objectives	33
Overview	33
Cranium, Cranial Vault, and Its Contents	34
Meningeal Layers	36
Dura Mater	38
Arachnoid Layer and Pia Mater	41

Ventricles	42
Cerebrospinal Fluid Path and Functions	43
Communication Through the Ventricular System	44
Disruptions to the Ventricular and Meningeal Systems	45
Hydrocephalus	45
Meningeal Damage	45
Summary	47
Additional Resources	48

Chapter 3. Neuron Anatomy and Physiology

51

Learning Objectives	51
Overview	51
Classification of Neurons	52
Neuronal Communication	53
Big Picture Overview	53
Membrane Potentials	53
Synaptic Transmission	55
Action Potentials	57
Myelinated Versus Unmyelinated Axons	61
Synaptic Transmission	61
Types of Neurotransmitters	63
Neurotransmitter Recovery and Degradation	64
Creating Meaning From Binary Signals	66
Patterns of Signals	66
Source of Signals	68
Region or Location	68
Conditions That Alter Synaptic Transmission	68
Neurological Disorders and Diseases That Affect Synaptic Transmission	68
Parkinson Disease	69
Multiple Sclerosis	69
Myasthenia Gravis	69
Pharmacological Effects on Synaptic Transmission	70
Blocking Effects	70
Prolonging Effects	70
Mimicking Effect	71
Summary	71
References and Additional Resources	72
Web links for MG testing	72

Chapter 4. Neuroembryology

75

Learning Objectives	75
Overview	75
The Neural Tube	78
Developmental (Embryological) Precursors	78
Sulcus Limitans	81
Lamina Terminalis (Precursor to the Corpus Callosum)	81
Vesicles of the Neural Tube (Central Nervous System Precursors)	81
Landmark Timelines	83

Telencephalon and C-Shaped Development	86
Disruptions to Development and Consequences	88
Summary	89
References and Additional Resources	90
Chapter 5. Diencephalon	93
Learning Objectives	93
Overview	93
Diencephalic Structures	94
Thalamus	94
Thalamic Nuclei	94
Hypothalamus	97
Optic Nerve and Optic Tract	97
Subthalamus	97
Epithalamus	97
Pituitary Gland	97
Damage to the Diencephalon	98
Summary	99
Chapter 6. Somatosensory Systems	101
Learning Objectives	101
Overview	101
Somatosensory System Structures	102
Sensory Receptors	102
Mechanoreceptors	103
Nociceptors	104
Proprioceptive Sensory Receptors	104
Thalamic Nuclei	105
Primary Somatosensory Cortex	105
Cortical Association Areas	106
Sensory Pathways	107
Dorsal Column–Medial Lemniscal Pathway	107
Spinothalamic Tracts	109
Spinocerebellar Tracts	110
Sensory Innervation	113
Damage to Somatosensory System Components	113
Spinal Cord Damage	113
Thalamic Damage	114
Cortical Damage	116
Summary	116
Reference	116
Chapter 7. Visual System	119
Learning Objectives	119
Overview	119
The Eye	120
Anterior Structures	120

Posterior Structures: The Retina	120
Visual Fields	122
Visual Pathway	123
Visual Cortex	126
Dorsal Pathway	126
Ventral Pathway	126
Damage to the Visual System	126
Visual Field Cuts	127
Cortical Damage	128
Summary	131

Chapter 8. Auditory and Vestibular Systems 133

Learning Objectives	133
Overview	133
Auditory System	134
The Cochlea	135
Converting Sound Waves Into Neural Signals	137
Auditory Pathway	138
Frequency and Intensity Coding in the Auditory System	140
Localization of Sound	143
Auditory Processing in the Cortex	144
Hearing Impairment and Damage to the Auditory System	144
Conductive Hearing Loss	144
Sensorineural Hearing Loss	144
Vestibular System	145
Vestibular Pathways	147
Summary	148
Reference	148

Chapter 9. Chemical Senses: Smell and Taste 151

Learning Objectives	151
Chemical Senses	151
Olfaction: The Sense of Smell	151
Olfactory Pathway	152
Impairments of Olfaction	154
Gustation: The Sense of Taste	155
Gustatory Pathway	157
Factors Influencing Taste Perception	157
Impairments of Gustation	158
Summary	158
References	159
Resource	159

Chapter 10. Motor Systems 161

Learning Objectives	161
Overview	161

Motor System Structures	162
Primary Motor Strip	162
Premotor and Supplementary Motor Areas	163
Basal Ganglia	163
Cerebellum	168
Motor Pathways	171
Pyramidal Tracts	171
Cranial and Spinal Nerves	171
Corticospinal Tracts	172
Corticobulbar Tract	177
Extrapyramidal Tracts	177
Rubrospinal Tract	177
Tectospinal Tract	177
Vestibulospinal Tract	177
Reticulospinal Tract	177
Motor Units and Muscle Innervation	177
Clinical Implications	181
Motor Cortex	181
Motor Pathways	182
Neuromuscular Junction	183
Basal Ganglia	184
Cerebellum	184
Summary	185

Chapter 11. Cranial Nerves **187**

Learning Objectives	188
Overview	188
General Functions	188
Cranial Nerve Pathways	194
Motor Pathways: Corticobulbar Tract	194
Sensory Pathways	194
Cranial Nerves III, IV, and VI: Oculomotor, Trochlear, and Abducens	194
Muscles of the Eye	194
Oculomotor Nerve	196
Trochlear Nerve	196
Abducens Nerve	196
Cranial Nerve V: Trigeminal Nerve	197
Cranial Nerve VII: Facial Nerve	200
Cranial Nerve IX: Glossopharyngeal	202
Cranial Nerve X: Vagus Nerve	203
Pharyngeal Branch of the Vagus	203
Superior Laryngeal Nerve of the Vagus	203
Recurrent Laryngeal Nerve of the Vagus	203
Pharyngeal Plexus	205
Cranial Nerve XI: Spinal Accessory Nerve	205
Cranial Nerve XII: Hypoglossal Nerve	205
Integration of Cranial Nerve Functions	207
Speech Production	207

X Clinical Neuroscience for Communication Disorders: Neuroanatomy and Neurophysiology

Swallowing	207
Clinical Implications: Examinations of Speech and Swallowing Mechanisms	209
Cranial Nerve/Oral Mechanism Examination	209
Smell and Taste	209
Vision	209
Extraocular Movements (CNs III, IV, and VI)	209
Jaw Movements and Mastication (CN V)	209
Facial Sensation (CN V)	209
Muscles of Facial Expression and Oral Preparation (CN VII)	210
Hearing (CN VIII)	210
Velar Functions: Motor and Sensory (CNs V, IX, and X)	210
Laryngeal Functions: Motor and Sensory (CN X)	210
Spinal Accessory (CN XI)	212
Lingual Motor Functions (CN XII With a Little Help From CN X)	212
Lingual Sensation (CNs V and IX)	212
Oral and Laryngeal Diadochokinetic Rate	212
Evidence for the Oral Mechanism Examination	212
Clinical Bedside Swallow Examination and Instrumental Assessment	212
Summary	213
Additional Resources	214

Chapter 12. Limbic System and Reticular Formation

217

Learning Objectives	217
Limbic System Structures and Functions	217
Homeostasis	218
Olfaction	222
Memory	223
Emotions	226
Integrating Limbic Information	229
Reticular Formation and Reticular Activating System	229
Summary	232
References and Additional Resources	233

Chapter 13. Cerebrovascular System

235

Learning Objectives	235
Overview	235
Blood Supply and Functional Organization	236
Circle of Willis	237
Cerebral Blood Supply Distributions	240
Blood Supply to the Thalamus and Basal Ganglia	244
Blood Supply to the Cerebellum	245
Brainstem and Spinal Cord Distributions	246
Midbrain	247
Pons	247
Medulla	249
Spinal Cord	249
Blood–Brain Barrier	249

Disruptions to Blood Supply	250
Summary	252
References and Additional Resources	253
Chapter 14. Communication and Cognition	255
Learning Objectives	255
Overview	256
Common Developmental Disruptions	256
Developmental Language Disorders	257
Autism Spectrum Disorder	257
Down Syndrome	257
Fragile X Syndrome	258
Common Neurological Insults and Diseases	258
Traumatic Brain Injury	258
Degenerative Diseases and Tumors	259
Communication	259
Language	261
Networks	261
Development	263
Lesions and Disorders	263
Cognition	267
Social Cognition	267
Networks	267
Development	267
Lesions and Disorders	269
Executive Functions	269
Networks	270
Development	270
Lesions and Disorders	270
Memory	271
Networks	272
Development	272
Lesions and Disorders	273
Attention	273
Networks	273
Development	275
Lesions and Disorders	275
Summary	276
Additional Resources	276
References	277
Chapter 15. Neuroplasticity and Social Determinants of Health	281
Learning Objectives	281
Overview	281
Neural (Cellular) Plasticity	282
The Chemistry of Early Long-Term Potentiation	283
The Chemistry of Late Long-Term Potentiation	283

Behavioral Plasticity	284
Intensity and Dosage	288
Factors That Contribute to Participation	289
Functional Reactivation Versus Functional Reorganization	290
Social Determinants of Health	290
Economic Stability	290
Education Access and Quality	291
Health Care Access and Quality	291
Neighborhood and Built Environments	292
Social and Community Context	292
Interactions Between Types of Social Determinants of Health	292
Summary	292
References and Additional Resources	293

Chapter 16. Clinical Cases **297**

Overview	298
Approach to Solving (Thinking Through) Cases	298
Section 1: Acquired Cases	299
Case 16–1: 48-Year-Old Female With Traumatic Brain Injury	299
Case 16–2: 32-Year-Old Male With Postural Headaches and Mixed Upper/Lower Motor Neuron Signs	299
Case 16–3: 56-Year-Old Female With Progressive Onset of Dysphagia and Speech Impairments	300
Case 16–4: 17-Year-Old Female With Traumatic Brain Injury	301
Case 16–5: 63-Year-Old Male With Aphasia and Right Hemiparesis	301
Case 16–6: 86-Year-Old Male With Insidious Onset of Cognitive–Communication Changes	302
Case 16–7: 45-Year-Old Female With Acute Onset of Confusion and Language Impairment	303
Case 16–8: 62-Year-Old Male With Acute Onset of Lethargy and Impaired Attention	304
Case 16–9: 52-Year-Old With Acute Onset of “Slurred” Speech and “Drunken” Gait	305
Case 16–10: 70-Year-Old Male With Acute Onset of Dysarthria, Vertigo, Nausea, and Double Vision	305
Case 16–11: 22-Year-Old Male With Acute Onset of Weakness and Respiratory Distress	306
Case 16–12: 62-Year-Old Female With Gradual Onset of Speech and Swallowing Impairments	307
Case 16–13: 78-Year-Old Female With Gradual Onset of Speech and Gait Disturbances	308
Case 16–14: 52-Year-Old Female With Declining Cognition, Speech, and Swallowing Function	308
Case 16–15: 86-Year-Old Female With Memory and Swallowing Difficulties	310
Case 16–16: 73-Year-Old Male With Right Facial and Tongue Atrophy	312
Section 2: Pediatric and Developmental Cases	313
Case 16–17: 5-Year-Old Male With Shunt Malfunction	313
Case 16–18: 4-Year-Old Male With Fetal Alcohol Syndrome	314
Case 16–19: 30-Year-Old Female With Agenesis of the Corpus Callosum	317
Case 16–20: 11-Year-Old Male With Brainstem Tumor	317
Case 16–21: 11-Year-Old Female With Traumatic Brain Injury	318

Case Question Answers	320
Reference	333

Appendix	Review of Head and Neck Anatomy	335
Review		335
Face		335
Facial Skeleton and Cranium		335
Facial Muscles		337
Velum		339
Tongue		341
Pharynx		341
Larynx		341
Neck		344
<i>Glossary</i>		347
<i>Index</i>		367

Preface: How to Use This Textbook

Thank you for choosing the second edition of *Clinical Neuroscience for Communication Disorders: Neuroanatomy and Neurophysiology*. The intent of this tutorial is to briefly describe and demonstrate the organization of chapters, which follow the format as discussed next with a few exceptions (e.g., the cases chapter [Chapter 16]). Understanding the organization may help both course instructors and students to best utilize the resources.

Initial paragraph ties content to clinical applications. Each chapter begins with an application to everyday clinical practice for speech-language pathologists, audiologists, and related professionals. Clinical applications are intuitive for many of the chapters/topics, but we do our best to connect the dots in those chapters and provide content where the connection might not be as obvious.

Our **customized illustrations** help solidify connections between anatomy and physiology. This is accomplished through

- a variety of views and perspectives (superior/inferior, dorsal/ventral, sections—coronal/transverse/sagittal, frontal/lateral/posterior);
- resections/cutaway illustrations to visualize deep, difficult to see or visualize structures;
- close-up (magnified) pullout illustrations of small sections of a structure along with the broader view of the structure itself for context;
- structures *in situ* (within the larger structure, which is transparent to allow you to see the deeper structure); and
- schematics, depicting sequences or processes, systems or networks.

In addition, we intentionally use both left and right hemisphere views throughout the book. This is done to implicitly support the message made explicit in Chapter 14 that both hemispheres play critical roles in communication.

We highlighted foundational concepts and terminology by **bolding keywords** throughout as well as including Latin and Greek word origins and meanings. In the second

edition, these bolded words are accompanied by a **glossary of terms** found at the end of the book.

Tables. Help sort out complex, multicomponent anatomy, physiology, and networks.

Examples		
Structure		
Blood supply		
Innervation		

Boxes. A place for applying learning.

Applications—These include everyday examples such as hitting your funny bone, which help tie anatomy and physiology with practical experiences.

Key terminology and concepts—Whenever there are numerous key terms necessary to understand broader concepts, a mini-glossary is included to define terms and concepts.

Exercises—Some applications include mini-labs or experiments you can conduct on yourself or a friend. These include things such as mapping your sensory receptor fields.

Clinical cases—Those embedded within each chapter are typically abridged to highlight the concepts of the chapter (e.g., hemorrhagic stroke, consequences of cerebellar damage). Expanded versions of key cases are included in the clinical cases chapter (Chapter 16) to provide more opportunities to interact with foundational concepts. Expanded cases also include guiding questions and an answer key for instructors/students. The broad intent of cases is to solidify understanding of content knowledge and make direct applications to clinical practice. This provides an initial exposure to the process of localization and differential diagnosis,

preparing learners for much deeper learning about diagnostics and interventions within their future disorder-based coursework.

The appendix. This provides a review of anatomical foundations typically covered in-depth in courses and texts on anatomy and physiology of the speech and hearing mechanism. This is particularly helpful to use in combination with Chapter 11 to remind students of the head and neck musculature.

The glossary. This provides definitions and etymologies of the bolded words found throughout the text.

The oral mechanism examination. Although not intended to be a replacement for a fully comprehensive and exhaustive oral mechanism exam for all types of clients and situations, this element of Chapter 11 ties anatomy directly to an application for our profession. Ties to clinical assessment of swallowing are also presented briefly here.

The neuroplasticity chapter (Chapter 15). This chapter connects readers to key principles of contemporary neuroscience, particularly extensions to everyday practice and broad support for habilitation and rehabilitation.

The communication and cognition chapter (Chapter 14). This chapter is broader than the typical language application chapter found in neuroscience books for communication disorders. We expanded this to address two areas that typically receive little attention in similar books, namely, right hemisphere contributions to communication and developmental cognitive communication disorders. Motor speech disorders are covered in Chapters 10 and 11.

The cases chapter (Chapter 16). Mentioned previously, this is cross-referenced within and across chapters.

Summary. At the end of each chapter, there is a plain-language summary that highlights key concepts within the chapter. Some learners may wish to begin there by reading the summary and key concepts before delving into the content, and then returning to it at the end of the chapter.


Key concepts.

1. A bulleted list is included at the end of each chapter to highlight key concepts and learning outcomes.
2. For students: at minimum, you should be sure to understand these key concepts. If you do not, we suggest that you return to the chapter resources provided by your instructor (recorded lectures/screencasts, animations, supplementary readings), and ask your peers/instructors to clarify questions.

References and additional resources. In some cases, these items are referenced directly in the text, whereas others are useful resources to augment your learning.

Chapter study guides. Study guides are a new addition to the second edition. They include image labeling and fillable spaces for definitions and descriptions. The chapter study guides can be found on the PluralPlus Companion Website.

Final note. The order of the chapters is based on how we teach neuroanatomy and physiology, but in some cases, the order is a bit arbitrary. Instructors can choose to assign chapters in the order that best fits their conceptualization and teaching style. Each chapter has references to others for more information, so you can easily find background or in-depth information if you teach the chapters in a different order.

1

Overview of the Nervous System

CHAPTER OUTLINE

Learning Objectives

Overview

Major Components

Organization of the Nervous System

Organizational Systems

Cytoarchitecture Organization

Organization by Function

Terminology

Nervous System Cells

Neurons

Glial Cells

Structures and Landmarks

Lobes

Frontal Lobes

Parietal Lobes

Temporal Lobes

Occipital Lobes

Subcortical Structures

Basal Ganglia

Thalamus

Limbic System

Cerebellum

Brainstem

Summary

References

Learning Objectives

1. Identify and describe the structures of the central versus peripheral nervous systems and their functions.
2. Describe cytoarchitectural and functional organization schemes for the nervous system.
3. Define and use anatomical terminology to refer to structures and locations in the nervous system.
4. Describe the structure and function of neurons.
5. List different types of glial cells and their functions.
6. Identify and describe the location and function of structures and regions in the central nervous system including the cerebral lobes, subcortical structures, cerebellum, brainstem, and spinal cord.

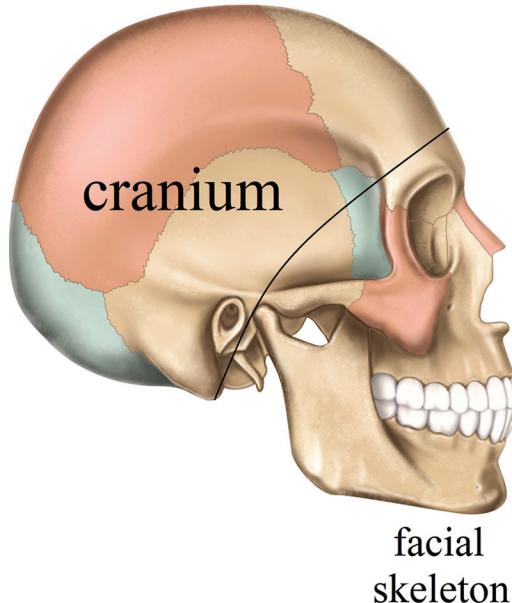
Overview

Welcome to *Clinical Neuroscience for Communication Disorders*. We are excited to share foundations in neuroanatomy, physiology, and contemporary neuroscience, while making connections to the everyday practices of speech-language pathologists and audiologists. Throughout this book, you will find clinical cases and everyday applications that connect neuroanatomy and physiology to development (both typical and disrupted), aging (both typical and disrupted), and acquired neurological disorders.

The nervous system can be divided into structures and regions that are anatomically or functionally distinct. This chapter provides an overview of the major components and their functions as well as common terminology. Everything that is mentioned here is discussed in more detail in later

2 Clinical Neuroscience for Communication Disorders: Neuroanatomy and Neurophysiology

chapters of the book. You can think of this as a quick tour so you know your way around the nervous system to prepare you to dive in deeper.


Major Components

The human nervous system can be broken down into two major components: the central nervous system (CNS) and the peripheral nervous system (PNS). The **central nervous system** includes the brain and spinal cord. The word *brain* is commonly used to refer to a collection of several major structures: the right and left cerebra (cerebrum), otherwise known as the two hemispheres; the brainstem; and the cerebellum. All are encased within the **cranium** (Figure 1–1). At the point where the brainstem exits the skull through the **foramen magnum**, the structure becomes the spinal cord. The spinal cord extends down through the spinal canal, the protective “tunnel” created by the stacked vertebrae.


A slice through the CNS—whether in the brain or spinal cord—will show dark and light areas, referred to as **gray matter** and **white matter**, respectively (Figure 1–2). The gray matter is made up of **cell bodies**. The white matter is made up of extensions from those cell bodies called **axons** (discussed later; see also Chapter 3). The cell bodies generate signals that are sent down the axons to another cell. In the brain, the gray matter makes up the outer, superficial surface called the **cortex** (Latin: “tree bark”) as well as several collections of cell bodies (called **nuclei** or ganglia) deep in the brain. In the spinal cord, the arrange-

ment is reversed, so the gray matter is deep (internal) and surrounded by white matter. As a general rule, gray matter processes information, and white matter transmits signals.

The slice through the CNS also will reveal cavities of the ventricular system (see Chapter 2). The ventricles are filled with cerebrospinal fluid (CSF), which provides nutrients as well as protection. Two other structures that

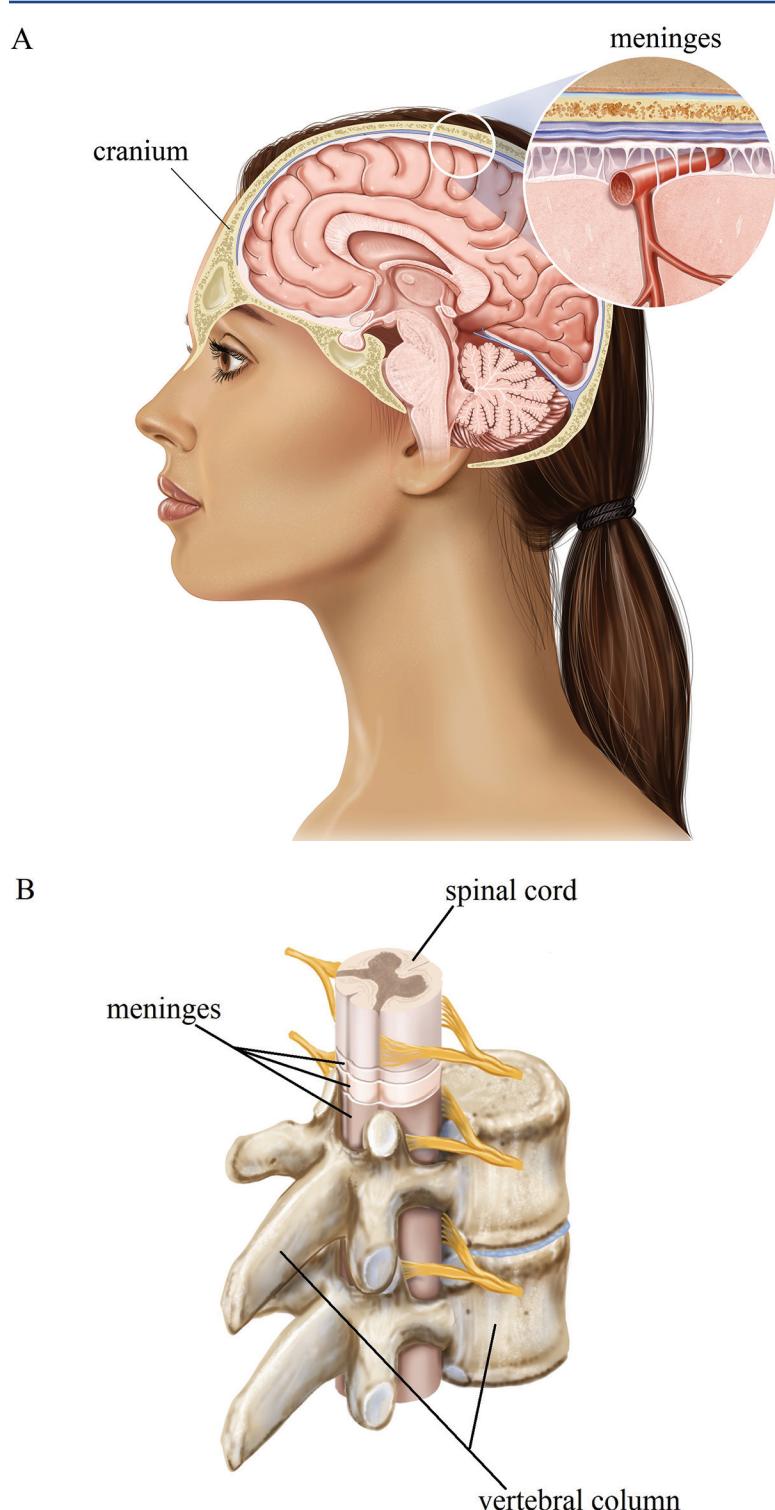

FIGURE 1–1. Cranium and facial skeleton.

FIGURE 1–2. Gray and white matter in the brain (A) and spinal cord (B).

provide protection are the meninges and the bony encasing (Figure 1–3). The meninges (see Chapter 2) are a set of three tissue layers that cover the entire brain and spinal cord

and provide a space for CSF to surround the CNS structures. The combination of the tissues and the fluid limits the movement of the brain and spinal cord. Superficial to

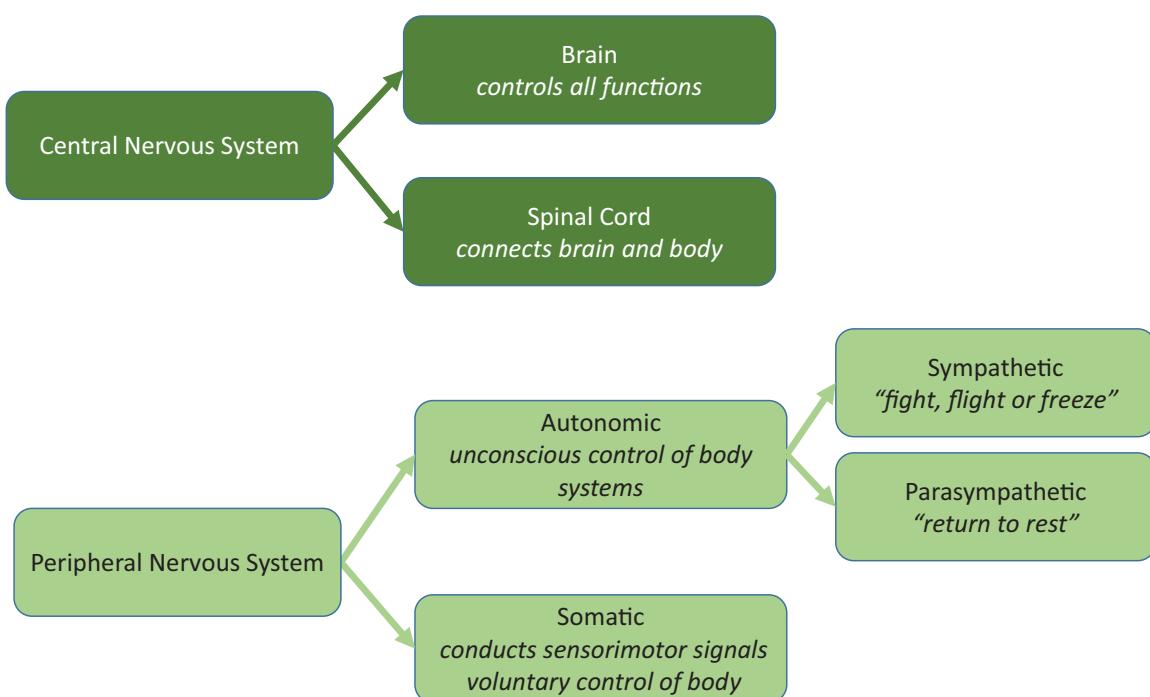
FIGURE 1–3. Meninges and bony casing for brain (A) and spinal cord (B).

4 Clinical Neuroscience for Communication Disorders: Neuroanatomy and Neurophysiology

the meninges is the bony structure. The cranium encases the brain, and the vertebral column surrounds and protects the spinal cord.

The PNS consists of all of the nerves that exit from the brainstem and spinal cord. These extend out into the body (the periphery) to innervate muscles, organs, and tissues of the body (Figures 1–4 and 1–5). Twelve pairs of cranial nerves exit from the brainstem and innervate structures of the head and neck. Thirty-one pairs of spinal nerves exit from the spinal cord and innervate the structures below the neck.

The PNS can be further divided into functional subsystems. The somatic (Greek: *soma* = “body”) nervous system innervates skeletal muscles and is primarily responsible for conducting signals regarding body sensation and movement. The autonomic (Greek: “having one’s own laws; independent”) nervous system is responsible for unconscious control of body systems. It can be subdivided into the sympathetic and parasympathetic nervous systems. The sympathetic system prepares the body for “fight, flight, or freeze”: When encountered with an emergency or crisis situation, the sympathetic nervous system will divert blood flow from unnecessary regions (e.g., the digestive system) to muscles and to the CNS to heighten perception, speed


up response times, and facilitate muscle movements. The parasympathetic system returns the body to homeostasis (Greek: “same, steady”) or to baseline levels once the crisis has passed.

Unlike the CNS, the PNS is not protected by either a layer of tissue or a bony structure. The nerves exit from the spinal cord and extend out to the organs, tissues, and muscles of the body.

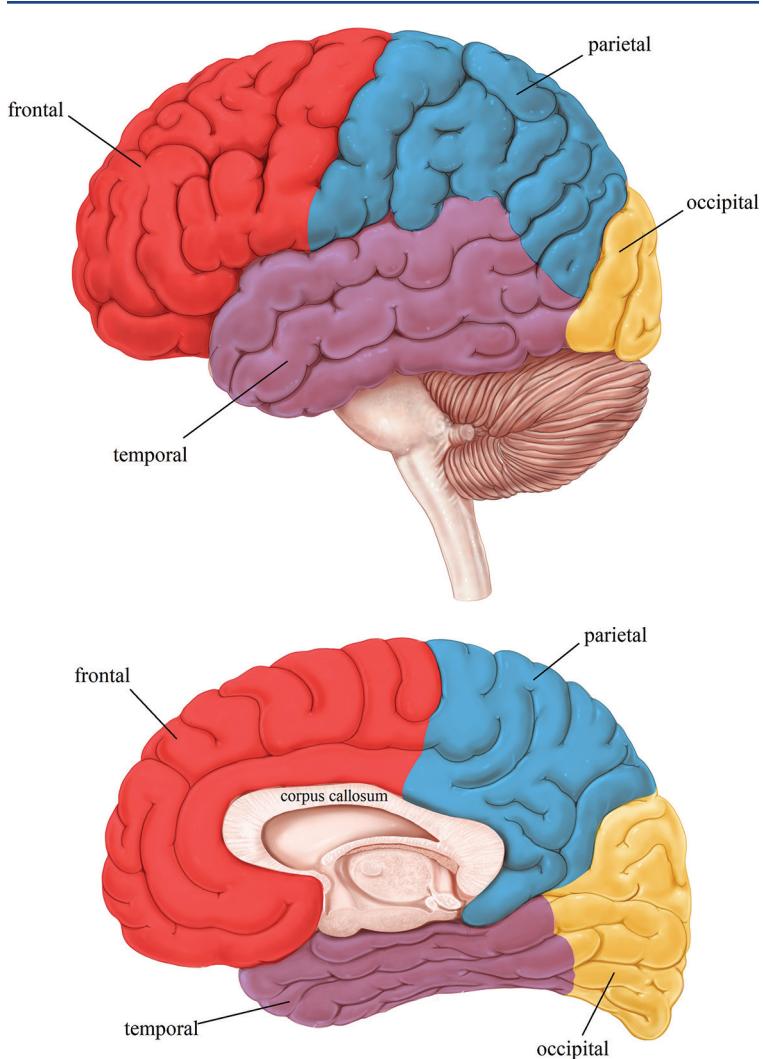
Box 1–1. That’s Not So Funny

When you “hit your funny bone,” you actually are hitting a nerve of the PNS. The ulnar nerve extends from the spinal cord and travels along the arm out to the medial portion of the hand, including the pinky and ring fingers. When you hit your elbow just right, you compress the ulnar nerve, resulting in a painful tingling sensation. Because the PNS is not protected by a bony structure, the nerves can be impacted by everyday actions.

FIGURE 1–4. Schematic of the central and peripheral nervous system components.

FIGURE 1–5. Peripheral nervous system.
The central nervous system (brain and spinal cord) is highlighted. All nerves exiting from the brainstem and spinal cord make up the peripheral nervous system.

Organization of the Nervous System


The nervous system is organized in several different ways. Along the vertical (superior–inferior) axis, there are both structurally and functionally distinct sections. In addition, there are functional differences along the horizontal (right–left) axis.

There is a hierarchy of complexity along the vertical axis. Beginning from the bottom and moving superiorly, the spinal cord primarily serves as a conduit for signals and controls only the most basic sensorimotor functions—reflexes. The brainstem controls autonomic and visceral systems. These are of the utmost importance for keeping your body alive because they regulate heart rate and respiration, but they are not part of the “thinking brain.” Integration of signals begins in the brainstem, such as integration of auditory signals from the left and right

ear and integration of auditory with visual signals. The diencephalon extends superiorly from the brainstem and is involved in not only relaying signals coming up from the spinal cord but also integration of signals from multiple sources (see Chapter 5). Some cognitive processing occurs in the diencephalon, although this is not well understood. Finally, the **cerebrum** is responsible for complex sensory and motor integration, perception, and cognitive functions such as planning, organization, reasoning, language, and emotions (see Chapter 14).

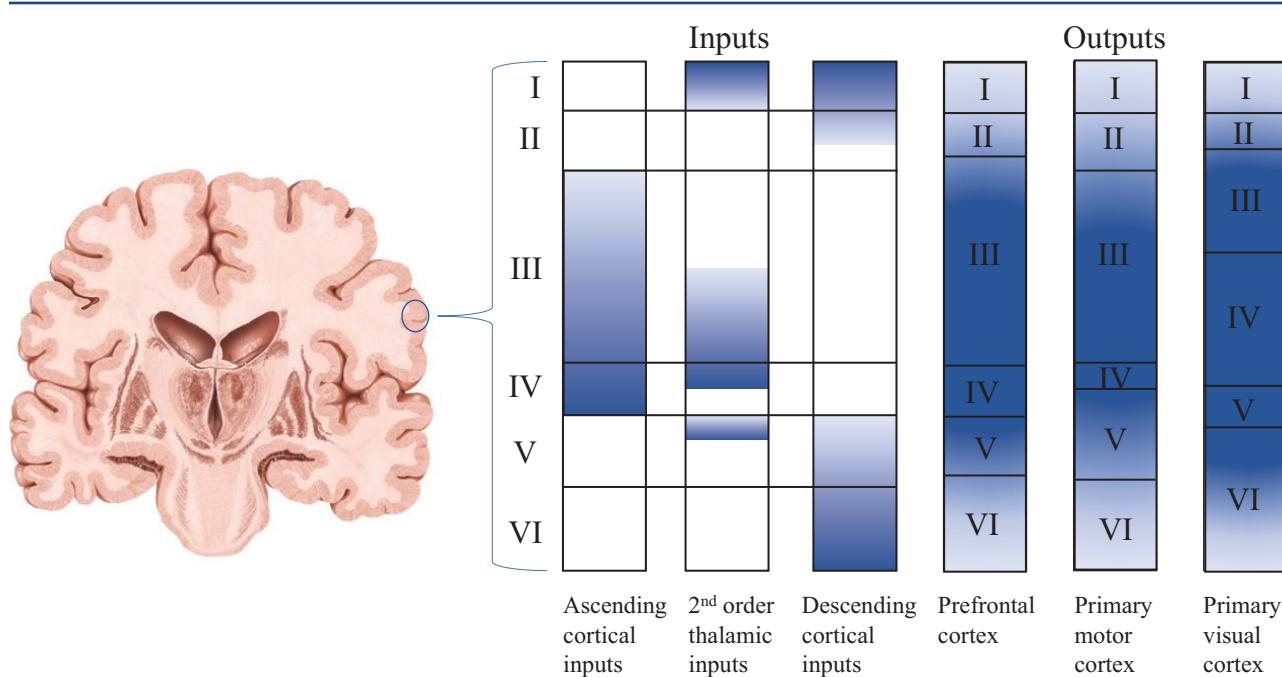
Organizational Systems

The hemispheres of the brain have been subdivided in multiple ways. Broadly, they are divided into lobes (frontal, parietal, occipital, and temporal; Figure 1–6), each with a variety

FIGURE 1–6. Lobes of the brain.

of functions, many of which (e.g., reading, social interacting) require input and integration from multiple lobes.

Cytoarchitecture Organization


The cortex (outer layer of gray matter in the hemispheres) is made up of six layers of cells. The thickness of the individual layers varies across regions of the brain. Layers III (cortex-to-cortex connections) and IV (thalamus-to-cortex connections) are particularly important for signaling within the cerebrum (Blumenfeld, 2010; Shipp, 2007; Figure 1–7). In 1909, Korbinian Brodmann published a numbered map of the cortex based on the cellular organization (Figure 1–8). The implication of the map was that cellular organization was linked to function: Each numbered area had a different function. Although the map is not perfect, functional differences are related to cellular structures. Throughout this book, Brodmann areas are noted for areas commonly identified by the numbers.

Organization by Function

Another way to describe organization of the CNS is by function. CNS regions can be subdivided into those that control movement (motor) and body sensation (somatosensory), special senses (visual, auditory, vestibular, taste, smell), language, and higher level cognition. There are sev-

eral principles that govern functional organization. First, throughout the CNS, motor areas tend to be located more anteriorly, and sensory areas are located more posteriorly (see Chapter 4). Second, sensory and motor functions are controlled contralaterally. This means that the right side of the brain controls the left side of the body and vice versa. Third, the cortex contains **primary, secondary (association),** and **tertiary (heteromodal)** areas. **Primary regions** are the core and initial location of processing. For example, in the auditory system, all input is processed initially in the primary auditory area in the superior temporal lobe. Further processing then occurs in **association areas** where there is integration of multiple aspects of signals (e.g., pitch and intensity and duration) as well as integration across modalities (e.g., linking visual with auditory signals to determine what object is creating a sound). The heteromodal areas are characterized by multimodal inputs and functions. The highest order areas of the brain, such as the prefrontal and limbic cortices, are heteromodal.

Primary processing areas are precisely organized based on a relevant principle. The organizing principle for motor and sensory areas is **somatotopy**. This means that they are arranged in reference to the body (soma). As shown in Figure 1–9, regions of the body are controlled by different areas within the primary motor and sensory areas. The resulting map, shown in Figure 1–10, is called a homunculus (Latin: “little human”). As you can see, the repre-

FIGURE 1–7. Cortical layers and connections.