Video-Based Aural Rehabilitation Guide

Enhancing Listening and Spoken Language in Children and Adults

Linda L. Daniel, MS, MA, FAAA, CCC-A

Sneha V. Bharadwaj, PhD, CCC-SLP
Contents

Preface xi
Acknowledgments xiii
Contributors xv

1 Overview of Aural Rehabilitation
Sneha V. Bharadwaj, Linda L. Daniel, and Susan G. Allen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Brief Anatomy and Physiology of the Auditory System</td>
<td>1</td>
</tr>
<tr>
<td>Types of Hearing Loss</td>
<td>5</td>
</tr>
<tr>
<td>Etiology of Hearing Loss</td>
<td>6</td>
</tr>
<tr>
<td>Diagnosis of Hearing Loss</td>
<td>7</td>
</tr>
<tr>
<td>Severity of Hearing Loss and Access to the Speech Spectrum</td>
<td>8</td>
</tr>
<tr>
<td>Treatment of Hearing Loss</td>
<td>11</td>
</tr>
<tr>
<td>Deaf Culture</td>
<td>11</td>
</tr>
<tr>
<td>Effects of Hearing Loss on the Perception and Production of Spoken Language</td>
<td>12</td>
</tr>
<tr>
<td>Impact of Hearing Loss on the Individual: The International Classification of Functioning, Disability, and Health</td>
<td>14</td>
</tr>
<tr>
<td>Effects of Auditory Deprivation Due to Hearing Loss</td>
<td>15</td>
</tr>
<tr>
<td>Aural Rehabilitation</td>
<td>15</td>
</tr>
<tr>
<td>Advocacy</td>
<td>20</td>
</tr>
<tr>
<td>Spotlight on a Family of Four with Hearing Loss: Parental Advocacy</td>
<td>21</td>
</tr>
<tr>
<td>Summary</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>Recommended Readings</td>
<td>24</td>
</tr>
<tr>
<td>Recommend Internet Sites for Further Learning</td>
<td>24</td>
</tr>
<tr>
<td>Study Questions</td>
<td>26</td>
</tr>
<tr>
<td>Answer Key</td>
<td>28</td>
</tr>
<tr>
<td>Appendix 1–1: The Principles of Auditory-Verbal Therapy</td>
<td>29</td>
</tr>
<tr>
<td>Appendix 1–2: The Principles of Auditory-Verbal Education</td>
<td>30</td>
</tr>
</tbody>
</table>

See Appendix 1 at the end of the book for the background information on individuals featured in Chapter 1 videos: Harry, Jerry, Aanya, Samuel, Gerald, Jaxson, Caleb, Amanda, Rebecca and Bruce, Aliza, and Bruce Jr.

2 Hearing Aids and Hearing Assistive Technology Systems
Amyn M. Amlani and Sneha V. Bharadwaj

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Hearing Aid Candidacy and Selection</td>
<td>31</td>
</tr>
<tr>
<td>Hearing Aid Pre-Fitting Considerations</td>
<td>33</td>
</tr>
<tr>
<td>Hearing Aid Styles</td>
<td>34</td>
</tr>
<tr>
<td>Ear Molds</td>
<td>35</td>
</tr>
<tr>
<td>Components of a Hearing Aid</td>
<td>35</td>
</tr>
<tr>
<td>Procedures for Hearing Aid Fitting and Verification</td>
<td>40</td>
</tr>
</tbody>
</table>

Look for this icon indicating there are related videos on the companion website.
Counseling and Education 41
Universal Newborn Hearing Screening 41
Challenges with Hearing Aids 42
Need for Daily Care and Troubleshooting 43
Hearing Assistive Technology Systems 43
Special Considerations in Hearing Aid Fitting 47
Over-the-Counter/Direct-to-Consumer Devices 51
Spotlight on Roberta: Audiological Consultation 51
Summary 52
References 53
Recommended Readings 54
Recommended Internet Sites for Further Learning 54
Study Questions 55
Answer Key 57

See Appendix I at the end of the book for the background information on individuals featured in Chapter 2 videos: Jerry and Roberta.

3 Cochlear Implants for Children and Adults with Hearing Loss 59
Sneha V. Bharadwaj, Linda L. Daniel, B. Robert Peters, and Kristin King
Introduction 59
Cochlear Implant: Parts and Function 60
Candidacy 61
Interprofessional Collaborations 63
Surgical Considerations 63
Choice of Hearing Technologies 64
Reimbursement 65
Cochlear Implant Surgery 65
Intraoperative Testing 66
Cochlear Implant Programming 67
Aural Rehabilitation Following Cochlear Implantation 68
Spotlight on Tucker: Early Identification and Intervention 69
Summary 70
References 70
Recommended Readings 72
Recommended Internet Sites for Further Learning 72
Study Questions 73
Answer Key 75

See Appendix I at the end of the book for the background information on individuals featured in Chapter 3 videos: Terri, Liam, Annabelle, and Tucker.

4 Auditory Brainstem Implants for Children and Adults with Hearing Loss 77
Sneha V. Bharadwaj, Linda L. Daniel, and B. Robert Peters
Introduction 77
The Auditory Brainstem Implant Device 77
A Brief History of the Auditory Brainstem Implant 78
Candidacy 79
Surgery and Risks 80
Interprofessional Collaborations 81
A Case Presentation: 5-Year-Old Justine 81
Contents

Communication Outcomes in Individuals with an ABI 82
Spotlight on Aanya: A Child with an ABI 84
Summary 85
References 85
Recommended Readings 86
Recommended Internet Sites for Further Learning 87
Study Questions 88
Answer Key 90

See Appendix I at the end of the book for the background information on the individual featured in Chapter 4: Aanya

5 Intervention After Early Diagnosis of Hearing Loss: A Listening and Spoken Language Approach

Linda L. Daniel and Christina Pergoe

Introduction 91
Overview of the Listening and Spoken Language Approach 93
Evidence-Based Practice 93
Diagnostic Approach to Intervention 95
Principles of Auditory-Verbal Therapy 98
Spotlight on Josiah: Establishing a Foundation of Listening and Spoken Language 106
Summary 107
References 107
Recommended Readings 110
Recommended Internet Sites for Further Learning 110
Study Questions 112
Answer Key 114

Appendix 5–1: Auditory Checklists, Hierarchies, and Developmental Scales 115
Appendix 5–2: Sample Lesson Plan for Hiti 116

See Appendix I at the end of the book for the background information on individuals featured in Chapter 5 videos: Kelsey, Samuel, Liam, Charlie, Tucker, Caroline, Landon, Hiti, Jaxson, Amari, Clara, Thomas, Josiah, Landon, Caleb, and Harry.

6 Factors Affecting Intervention and Outcomes of Children with Hearing Loss

Linda L. Daniel, Ellen A. Rhoades, and Sneha V. Bharadwaj

Introduction 119
Hearing Loss 120
Hearing Technologies and Related Factors 121
Language Environment 123
Family 127
Community 129
Cultural and Linguistic Diversity 130
Additional Disorders 132
Spotlight on Jaxson: A Child with CHARGE Syndrome 137
Summary 138
References 138
Recommended Readings 143
Recommended Internet Sites for Further Learning 145
Study Questions 146
Answer Key 148

See Appendix I at the end of the book for the background information on individuals featured in Chapter 6 videos: Charlie, Rebecca, Aliza, Maggie, Caleb, Meghana, Amanda, Amari, Hiti, Cade, Caleb, Landon, and Jaxson.

7 Educational Supports for Students with Hearing Loss: Primary Through Post-Secondary Settings
Sarah D. Wainscott and Sneha V. Bharadwaj

Introduction 149
Supporting a Continuum of Communication Approaches 150
Facilitating Decisions Regarding Educational Placement 151
Identifying and Implementing Communication-Related Accommodations 154
Interprofessional Collaborations 158
Teaching Strategies 160
Providing Ongoing Communication Supports 160
Promoting Transition Planning and Advocacy 168
Facilitating Self-Identity and Self-Determination 170
Spotlight on the Oklahoma School for the Deaf and Sunshine Cottage School for the Deaf: Two Educational Philosophies 171

Summary 173
References 173
Recommended Readings 177
Recommended Internet Sites for Further Learning 178
Study Questions 180
Answer Key 182

See Appendix I at the end of the book for the background information on individuals featured in Chapter 7 videos: Aanya, Cade, Meghana, Maggie, and Rhegan.

8 Aural Rehabilitation for Adults with Hearing Loss
Linda L. Daniel, Kristin King, Linda Thibodeau, and Carol Cokely

Introduction 183
Aural Rehabilitation with a Heterogeneous Population 183
Quality of Life for Persons with Hearing Loss, Their Families, and Communication Partners 184
Assessment of Aural Rehabilitation Needs 185
Aural Rehabilitation to Improve Communication 190
Factors Affecting Aural Rehabilitation Goals, Procedures, and Outcomes 194
Hearing Assistive Technology Systems 196
Spotlight on Cindy: Self-Determination and Self-Advocacy 199

Summary 200
References 200
Recommended Readings 204
Recommended Internet Sites for Further Learning 206
Study Questions 207
Answer Key 209

Appendix 8–1: TELEGRAM Assessment Tool 210

See Appendix I at the end of the book for the background information on individuals featured in Chapter 8 videos: Jerry, Rebecca, Amanda, Roberta, Gerald, Annabelle, Cindy, Brittany, and Terri.
Fundamentals of Assessing Communication Skills in Children and Adults with Hearing Loss

Sneha V. Bharadwaj and Jill Duncan

Introduction 213
Interprofessional Collaboration (p)
Objectives of Assessment (p)
Types of Assessment (p)
Accommodations and Modifications 221
Cultural and Linguistic Diversity 222
A Case Presentation: Five-Year-Old Hiti (p)
Special Considerations in the Assessment of Children and Adults with Hearing Loss 224
Spotlight on Silas: A Child with Social Communication Needs (p)
Summary 228
References 228
Recommended Readings 230
Recommended Internet Sites for Further Learning 231
Study Questions 232
Answer Key 234

See Appendix I at the end of the book for the background information on individuals featured in Chapter 9 videos: Silas, Josiah, Landon, Clara, Liam, Harry, Jaxson, Bruce Jr, Annabel, Terri, Meghana, Jerry, and Hiti.

Quality of Life, Counseling, and Advocacy for Children and Adults with Hearing Loss

Linda L. Daniel, Andrea D. Warner-Czyz, and Roshini Kumar

Introduction 235
Effects of Hearing Loss on Quality of Life (p)
Counseling Individuals with Hearing Loss (p)
Advocacy (p)
Spotlight on Kim: Advocacy for People with Deaf-Blindness (p)
Summary 254
References 254
Recommended Readings 258
Recommended Internet Sites for Further Learning 259
Study Questions 260
Answer Key 262

See Appendix I at the end of the book for the background information on individuals featured in Chapter 10 videos: Kelsey, Aliza, Bruce, Amanda, Charlie, Jaxson, Landon, and Silas.

Appendix I: Background Information on Persons with Hearing Loss Featured in the Videos 263
Appendix II: A Brief History of Aural Rehabilitation 297
Index 299
Preface

This video-based textbook was conceived as a format in which to present over 200 captioned videos that illustrate aural rehabilitation (AR) practices to enhance listening and spoken language in individuals who have hearing loss, ranging from infants to older adults. It is intended to educate undergraduate university students in speech-language pathology, audiology, and education of the deaf and hard of hearing; enhance the knowledge and skills of practicing professionals; and assist persons with hearing loss, their families, and communication partners in understanding hearing loss and aural rehabilitation. The extensive videos also serve as a resource for graduate students who are enrolled in an aural rehabilitation practicum or those who are involved in student teaching.

The chapters and videos represent information regarding professional practices in AR used with a heterogeneous group of children and adults with hearing loss. The importance of interprofessional practice and collaboration is integrated into each chapter, to provide optimal patient care. Videos feature audiologists, speech pathologists, listening and spoken language specialists, teachers of the deaf and hard of hearing, early interventionists, otologists, and occupational therapists practicing in settings such as clinics, private practice, schools, hospitals, and the community. The discussions of personal hearing devices and other hearing assistive technologies along with strategies to enhance listening and communication are presented with the intention of optimizing communication functions of persons with hearing loss for greater participation in the hearing-speaking mainstream. Topics covered in the text of the chapters and videos include hearing technologies, AR procedures for children and adults with hearing loss and their families, factors that affect outcomes, fundamentals of assessment, education, and the psychosocial well-being of persons with hearing loss. Some topics appear in more than one chapter, as they are integral to the focus of that chapter. Similarly, a small number of videos are presented in more than one chapter, as they support a wide range of topics.

The framework of AR presented in this video-based book focuses primarily on the use of listening and spoken language (i.e., Auditory-Verbal communication) for children and adults with hearing loss. In addition to listening and spoken language, other modes of communication are discussed and demonstrated in videos as is the communication philosophy of individuals who identify with the Deaf culture. Taken together, the approaches included in the chapters emphasize how to improve communication function in children and adults with hearing loss while respecting client and family choices. With improved communication, individuals can enjoy expanded opportunities and more fulfilling experiences in socialization, education, employment, and recreation. Whereas verbal communication underlies most social interactions, the roles of family, friends, coworkers, and other communication partners are discussed and their involvement in the AR process is illustrated in the videos.

As an introductory teaching guide, the chapters in this video-based textbook provide background knowledge on a number of topics, and the videos illustrate the application of this knowledge to AR services. While a wide range of topics and current issues are addressed in this textbook, they are not intended to be exhaustive. The activities demonstrated in the videos are for illustrative purposes. The activities and practices presented in each video were selected for the individual seen in the video and may or may not be applicable to another child or adult with hearing loss. All AR services should be completely individualized and tailored to meet the needs of the individual and family. It is our hope that this video-based book will inspire students and practicing professionals to assist people with hearing loss in improving their communication function and expanding their opportunities in life.
Severity of Hearing Loss and Access to the Speech Spectrum

As mentioned earlier, hearing loss may be congenital or acquired. Hearing loss can also be stable, fluctuating, progressive, or sudden. It can occur at any point in life and can change throughout life. Hearing loss severity can be minimal, mild, moderate, moderately severe, severe, or profound (Table 1–3). In addition, hearing sensitivity may not be uniform across the speech frequencies and can be described with greater detail. For example, hearing loss can be within normal limits in the low to mid frequencies and severe to profound in the high frequencies.

Figure 1–4 shows audiograms depicting varying severity of hearing loss, configurations of hearing loss, as well as the speech banana, which indicates the general area of the audiogram which

Table 1–2. Descriptions of Tests Commonly Used to Identify Hearing Loss

<table>
<thead>
<tr>
<th>Hearing Tests</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditory brainstem response</td>
<td>An electrophysiological response to sound from the brainstem, measured by electrodes placed on the scalp. It can provide an estimate of frequency-specific thresholds.</td>
</tr>
<tr>
<td>Otoacoustic emission</td>
<td>Low-intensity sound generated as a result of vibrations of the hair cells in the cochlea in response to a sound stimulus. Measured with a sensitive microphone placed in the ear canal.</td>
</tr>
<tr>
<td>Auditory steady-state response</td>
<td>ASSR consists of neural potentials in response to modulated auditory stimuli measured via surface electrodes. It is used to estimate frequency-specific thresholds.</td>
</tr>
<tr>
<td>Tympanometry</td>
<td>This test provides information concerning the mobility of the tympanic membrane and status of the middle ear transmission system.</td>
</tr>
<tr>
<td>Acoustic reflex measure</td>
<td>The acoustic reflex is an involuntary contraction of middle ear muscles in response to loud sounds. This measure is helpful in identifying whether retrocochlear pathology is present.</td>
</tr>
<tr>
<td>Visual reinforcement audiometry</td>
<td>A child is conditioned to make a head turn toward visual reinforcers (e.g., lights, mechanical toys) in response to sound.</td>
</tr>
<tr>
<td>Conditioned play audiometry</td>
<td>The child is taught to perform an action with a toy upon hearing a sound presented by the audiologist.</td>
</tr>
<tr>
<td>Conventional audiometry</td>
<td>Also known as pure-tone audiometry. Pure tones are presented at various frequencies and intensities to a person, who indicates when the sound is heard.</td>
</tr>
<tr>
<td>Speech detection threshold</td>
<td>A measure used to determine the lowest hearing level at which a patient can detect the presence of speech on 50% of the test trials.</td>
</tr>
<tr>
<td>Speech recognition threshold</td>
<td>A measure designed to find the lowest hearing level that a patient can identify or repeat words on 50% of the test trials. The most common stimuli used are two-syllable words with equal stress on each syllable (i.e., spondees).</td>
</tr>
<tr>
<td>Suprathreshold speech recognition</td>
<td>A measure of the percentage of single syllable words and sentences correctly identified or repeated at various loudness levels. Tests are available for children and adults.</td>
</tr>
</tbody>
</table>
1. Overview of Aural Rehabilitation

encompasses the *speech frequencies*. Audiogram A shows mild hearing loss with a cookie bite configuration; audiogram B shows a moderate hearing loss with a rising configuration; audiogram C shows a severe hearing loss with a flat configuration; and audiogram D shows a profound hearing loss with a sloping configuration. As seen in Figure 1–4, the severity of hearing loss impacts speech recognition performance. Word discrimination scores generally become poorer with increased severity of hearing loss. The speech banana depicted in each audiogram illustrates which phonemes (vowels and consonants) will be difficult to detect, discriminate, or identify given the configuration and severity of hearing loss. Thus, knowing the degree

<table>
<thead>
<tr>
<th>Degree of Hearing Loss (Severity)</th>
<th>Hearing Loss Range (dB HL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>−10 to 15 dB</td>
</tr>
<tr>
<td>Slight/Minimal</td>
<td>16 to 25 dB</td>
</tr>
<tr>
<td>Mild</td>
<td>26 to 40 dB</td>
</tr>
<tr>
<td>Moderate</td>
<td>41 to 55 dB</td>
</tr>
<tr>
<td>Moderately severe</td>
<td>56 to 70 dB</td>
</tr>
<tr>
<td>Severe</td>
<td>71 to 90 dB</td>
</tr>
<tr>
<td>Profound</td>
<td>>90 dB</td>
</tr>
</tbody>
</table>

Source: Adapted from ASHA, 2015.

Figure 1–4. Audiometric configurations, severity of hearing loss, and the speech banana.
to which a PHL has access to the speech spectrum will assist the audiologist in counseling, helping the individual understand how the hearing loss relates to their difficulties in speech recognition, and in explaining the expected benefits of hearing technologies. These concepts are explained by a clinical audiologist in Video 1–6.

The effects of severity of hearing loss on speech recognition can also be conceptualized from a familiar sounds audiogram (Figure 1–5).

The familiar sounds audiogram provides examples of phonemes and environmental sounds that may not be heard or misunderstood by a PHL based on configuration of the listener’s hearing loss and benefit from hearing technology.

Individuals may have symmetrical or asymmetrical hearing. The same type, degree, and configuration of hearing loss in both ears is a symmetrical hearing loss. In asymmetrical hearing loss, the degree of hearing loss is different in each ear.
1. Overview of Aural Rehabilitation

ear. If one ear has normal hearing and the other has a profound hearing loss, it is referred to as single-sided deafness (SSD). Another example of asymmetrical hearing is a mild hearing loss in one ear and a severe hearing loss in the other.

Treatment of Hearing Loss

Hearing loss may be treated with medication, surgery, and/or hearing technologies. For example, medication may be prescribed to treat serous otitis media. Surgery may be needed to correct conductive hearing loss resulting from a perforated tympanic membrane or disarticulated ossicular chain. Hearing technologies can improve hearing in most individuals with unilateral or bilateral hearing loss. The vast majority of PHL can benefit significantly from hearing aids. For those whose hearing loss is too severe to derive necessary benefit from hearing aids for speech recognition, a cochlear implant may be an option. In Video 1–7, Harry’s mother discusses how the asymmetry, severity, and configuration of her son’s hearing loss led to his use of two different types of hearing technologies.

If conventional hearing aids are not appropriate, implantable hearing technologies may be considered. Implantable devices, including bone anchored hearing aids, cochlear implants, and auditory brainstem implants (ABIs), may be recommended following comprehensive hearing testing and medical evaluation. Hearing aids and cochlear implants are highly effective in providing access to the speech spectrum, which includes the frequencies that are necessary for understanding speech. Many children and adults with hearing aids and cochlear implants have achieved positive outcomes in speech recognition. In special cases, such as a child with absent cochleae or an adult with absent auditory nerves due to acoustic neuromas, an ABI may be an option. An ABI does not provide the sound quality of hearing aids and cochlear implants. However, with ongoing, intensive auditory-based intervention, some individuals with an ABI may acquire awareness and recognition of environmental sounds, prosodic patterns, and segmental features leading to some speech recognition (Allen & Daniel, 2016). Video 1–8 shows Aanya in an assessment session with her AV therapist probing her auditory skills for discrimination of prosodic and segmental features.

Hearing aids, cochlear implants, and ABIs are discussed in detail in Chapters 2, 3, and 4. It should be noted that some PHL do not elect to use hearing technologies due to personal preference or factors such as finances and cosmetics. Individuals who identify with the Deaf culture may not choose to use hearing technologies.

Deaf Culture

People who identify themselves with the Deaf culture use American Sign Language (ASL) as their primary mode of communication. They consider being Deaf to be their cultural and linguistic identity, take pride in their history, and prefer to use a visual-spatial mode of communication. Deaf culture perspective maintains that deafness is a difference, not a disability, and therefore, hearing technology is not necessary. Deaf culture perspective also maintains that Deaf people do not focus on their physical difference, but instead, capitalize on their strengths in visual communication, use of ASL, and sense of belonging within a linguistic-cultural minority (Marschark, Zettler, & Dammeyer, 2017). Deaf people may rely on visual technologies such as closed captioning, texting, Internet-based face-to-face communication technologies, and devices that use vision and touch for accessing environmental sounds. Examples of visual and tactile devices are flashing lights that signal the doorbell and a vibrating alarm clock, respectively. Many members of Deaf culture support residential schools for children with hearing loss and educational programs that promote a bilingual ASL-English approach to teaching communication and literacy. Deaf culture is discussed in further detail in Chapter 7. Video 1–9 shows a university professor explaining Deaf culture. In Video 1–10, the principal of an elementary program at a school for the Deaf discusses the role of the Deaf community in the lives of individuals who are Deaf.
Effects of Hearing Loss on the Perception and Production of Spoken Language

A PHL may have difficulty understanding face-to-face conversations, overhearing conversations of others, hearing at a distance, and understanding speech in noise. The degree to which a PHL has access to the acoustic properties of speech will affect detection, discrimination, and identification of certain phonemes, which, in turn, impact speech recognition and comprehension of spoken language. Speech perception, in turn, is inextricably tied to speech acquisition and monitoring through auditory feedback.

Speech Acoustics

An understanding of speech acoustics and its relationship to speech perception helps an AR practitioner determine which speech features a PHL may hear or have difficulty in perceiving. Speech comprises suprasegmental (e.g., intonation, word emphasis, syllable stress, juncture) and segmental (vowel and consonants) elements. Suprasegmental (i.e., prosodic) aspects of speech are conveyed by varying intensity, frequency, and duration across syllables or longer units of speech. Suprasegmental aspects are conveyed primarily in the low frequencies and are used to express emotions and meaning. Vowels differ from each other in terms of tongue height and placement. Similarly, consonants differ from each other in terms of voicing, manner of articulation, and place of articulation. These production differences are reflected in acoustic differences (e.g., intensity, frequency, temporal information). In general, vowels are more salient (i.e., louder), longer, and lower in frequency than consonants. In contrast, consonants are primarily in the higher frequency range, have less power (i.e., are softer), and are shorter in duration. The acoustic cues that are important in perception of vowels include: burst frequency, noise intervals, formant transitions, voice onset times, and nasal murmur (see Kent & Read, 2002 for basic descriptions).

Effects of Hearing Loss on Speech Perception and Production

Many factors affect speech perception and speech production. These include: severity and configuration of hearing loss, the degree to which a PHL has access to the speech spectrum through the hearing technologies (e.g., hearing aid, cochlear implant, ABI), background noise, associated auditory disorders, and cognitive status. A PHL typically has more difficulty hearing and identifying consonants than vowels. Significant hearing loss in the lower frequencies may lead to confusions in vowel identification, voicing (e.g., /b / vs. /p/), and perception of suprasegmental features (e.g., perception of unstressed syllables). Hearing loss in the mid and higher frequencies is often associated with difficulties in perceiving cues related to manner of articulation (e.g., bee vs. see), place of articulation (e.g., call vs. tall), and either detecting or distinguishing between less salient consonants (e.g., /f/, /s/, /th/) (Nerbonne, Schow, & Blaiser, 2018).

Hearing loss, even with appropriately fitted hearing technologies, may result in an individual hearing an impoverished (i.e., degraded) representation of spoken language. During the acquisition of spoken language, impoverished auditory input and auditory feedback typically are reflected in speech production errors. Audio 1–1 and Audio 1–2 illustrate speech production differences in 3½-year-old twin girls. One of the twins has typical hearing and the other has congenital, moderate hearing loss and has worn hearing aids for 1½ years. Audio 1–1 is a short speech sample of the twin who has typical hearing, and Audio 1–2 is a speech sample of the twin with moderate hearing loss. As can be noted from these speech samples, the twin with hearing loss demonstrates atypical resonance and articulation errors. The waveform and spectrogram shown in Figure 1–6 demonstrate that the twin who has typical hearing was able to produce the phrase “I like juice” in a developmentally appropriate manner, whereas the sibling with hearing loss demonstrated omission of final consonant as well as phoneme substitutions.
1. Overview of Aural Rehabilitation

Speech production characteristics of individuals with hearing loss vary depending on the degree of hearing loss, access to the speech spectrum, age of intervention, and quality of intervention. Some of the suprasegmental and segmental characteristics of the speech of PHL may include: higher F0; limited F0 ranges; longer durations of vowels, consonants, syllables, and phrases; abnormal resonance; deviant voice quality; restricted formant frequency ranges (often described as constricted vowel spaces); omission, distortion, or substitution of consonants; and abnormal voice-onset times (e.g., Bharadwaj & Assmann, 2013; Bharadwaj & Graves, 2008; Ertmer & Goffman, 2010; Osberger, 1987; Serry & Blamey, 1999; Tobey et al., 1991; Uchanski & Geers, 2003; Waldstein, 1990).

It is not uncommon for individuals with significant hearing loss to present with deficits in vocabulary, morphology, syntax, phonology, pragmatics, and world knowledge (e.g., Salas-Provance, Spencer, Nicholas, & Tobey, 2014; Tomblin et al., 2015; Walker et al., 2015). The effects of hearing-related language errors permeate the individual’s receptive language, expressive language, reading,