
MATLAB® Primer for
Speech-Language Pathology

and Audiology

1

1
Introduction to

Programming With
MATLAB®

Introduction to MATLAB®

What Is MATLAB®?

MATLAB (short for Matrix Laboratory) is both a programming language and
computing environment developed by MathWorks, Inc. (Natick, Massachu-
setts), and is designed for performing calculations and data processing. It is
traditionally used in engineering and other computationally intensive fields
due to its ability to handle large data sets and matrices natively. Evidence-
based practice, improved tools for speech and language recording, as well as
a widening scope of parameters assessed in speech-language pathology prac-
tice have changed the assessment in speech pathology from subjective and
general to objective and detailed. A host of quantitative measures detailing
respiratory and vocal tract functions for speech as well as the neurophysiol-
ogy of language and reading are now used on a regular basis in speech-
pathology practice. Most of these parameters are computationally intensive
and therefore a challenge to processing, and keeping them together in a
record presents an even greater obstacle. In this book, we will cover the use
of MATLAB not only for data processing but also for record keeping relevant
to speech-language pathology and audiology.

	2   MATLAB® Primer for Speech-Language Pathology and Audiology

Of note are several free alternatives to MATLAB, specifically GNU Octave
and SciPy (an extension to the Python programming language). With some
exceptions, code written for MATLAB is generally compatible with the
Octave system, and vice versa. However, for the sake of simplicity, this book
adheres to standard MATLAB syntax and assumes the presence of a MATLAB
installation.

Why Use MATLAB®?

There are two main reasons why MATLAB is the work environment of choice
for speech-language pathologists and audiologists: its intrinsic qualities and
its pedagogical advantages. The latter consideration is important as we
acknowledge programming skills do not yet figure centrally in either speech-
language pathology and audiology training or practice.

MATLAB has a number of desirable features for computational work
in speech-language and hearing research. It can natively handle the .wav
format commonly used in recorded speech, and allows direct operations on
audio and other waveform data, such as frequency analysis, amplitude cor-
rection, root-mean-square (RMS) calculation, and many others. It can also
import large data sets in .txt, .xls, .xlsx, and other common data-storage
formats without requiring the user to resort to the low-level file operations
(e.g., manually opening and closing files, or dealing with reading binary data
byte by byte) common in other languages. Furthermore, many expansion kits
known as Toolboxes are available from MathWorks or are freely download-
able online, which allow the user to add functionality to the language as
projects or research dictate. Of particular value is the Signal Processing Tool-
box, which is capable of online computation, can produce spectrograms and
other graphical representations of speech quickly and easily, and contains a
number of useful functions for speech analysis.

For the purposes of teaching programming to speech-language patholo-
gists and audiologists, the interactive nature of MATLAB is invaluable. Many
other programming languages (e.g., C++ or Java) require sometimes-lengthy
compile times between writing the code and seeing the result, which can
make it difficult for the beginner to try new ideas or understand why a
portion of code does not work as planned. MATLAB, however, executes
instructions entered in its Command Window with near-immediate feedback,
and thus is favorable to iterative development where a project is tested and
modified extensively throughout the development cycle. Furthermore, the
abstraction of frequently used code is aided by the use of .m files. These
.m files can be called by any other piece of code without specific inclusion

Introduction to Programming With MATLAB®   3

directives — they only need to be in the correct folder or search path. This
is used to good effect in developing the concepts of functions and abstrac-
tion. On a more technical note, creation of variables in MATLAB is as simple
as typing an assignment statement (e.g., myVar = 12.345). In Java or C++,
variables must be explicitly declared and assigned to a particular data type
before they can be used; while this practice does lead to more efficient code,
it often proves a stumbling block for new programmers, or even experienced
developers when prototyping a new project. MATLAB programmers can con-
centrate on higher-level abstractions and program semantics without bother-
ing with memory management.

Finally, a sizable body of code already exists in MATLAB for many com-
mon speech-processing tasks and theoretical models, including the influential
Klatt synthesizer (Klatt, 1980) and the DIVA model (Guenther et al., 2006).
And because MATLAB works on Windows, Mac OS X, and Linux, most of this
code is easily portable across platforms when appropriate conventions are
used. This applies to reader-generated code as well, allowing one to, say, write
code on a Mac at home and run it successfully on a PC or Linux machine in
the lab or clinic the next day. Throughout the text, we will emphasize code
portability when discussing use of file names, paths, and file operations.

Some Disadvantages

We would be remiss to overlook MATLAB’s relatively low speed for iteration
in extremely computationally intensive operations. Because MATLAB is a
high-level, interpreted (not compiled) language, it runs much more slowly
than languages closer to the machine’s native hardware, like C++, unless
proper vectorization techniques are applied. The speed issue can be allevi-
ated through the use of .mex files, which are compiled code and run many
times faster than the corresponding .m files, but which can also require trans-
lating the MATLAB code into a compiled language and running it through a
separate compiler for each machine architecture (32- vs. 64-bit, e.g.). On Win-
dows machines, precompiled DLL files can also be used with the calllib()
function. The creation of such files, however, is beyond the scope of this
introductory textbook.

The MATLAB® Environment

This is the default layout of the MATLAB window. When MATLAB is freshly
installed, its main window, or Desktop, will look similar to Figure 1–1.

4

F
ig

u
re

 1
–1

. 
D

ef
au

lt
la

yo
ut

 o
f t

he
 M

AT
LA

B
 w

in
do

w
.

Introduction to Programming With MATLAB®   5

The topmost element of the Desktop is the Toolstrip, which is a tabbed
interface to a wide variety of MATLAB functions and commands. Some func-
tions are specific to the MATLAB environment itself, such as the “New Script”
and “Open” buttons, whereas others are more applied, such as those in the
“Plots” or “Apps” tabs.

Below the Toolstrip, the desktop is divided into a number of smaller
windows, or panels. The most important panel is the Command Window,
in which typed commands are executed, calculations are performed, and
functions calls are made (Figure 1–2). Commands are entered after the
prompt (>>), and submitted by pressing the ENTER or RETURN key. When
a calculation is completed, results will also be displayed in the command
window unless output is suppressed by terminating the statement with a
semicolon (;).

A useful tool for new MATLAB programmers is the Function Browser
button, which is indicated as a script fx to the left of the prompt in the Com-
mand Window. As the name would suggest, clicking on this button allows
one to browse through all functions accessible through base MATLAB and
any installed Toolboxes, insert them into scripts or the command window, or
call up their documentation.

To the left of the Command Window is the Current Folder panel. Orga-
nized as a file manager, this panel displays all files and subfolders in the

Figure 1–2.  Command window.

