INTERDISCIPLINARY CLEFT CARE
GLOBAL PERSPECTIVES

Usama S. Hamdan, MD, FICS
Carolyn R. Rogers-Vizena, MD
Raj M. Vyas, MD
Brian C. Sommerlad, MBBS, FRCS
David W. Low, MD
Contents

Preface ix
Acknowledgments x
About the Editors xi
Contributors xiii

Section I. Early Care of the Infant With Cleft Lip and/or Palate

1. Embryology, Anatomy, and Classification of Cleft Lip and Palate
 Carolyn R. Rogers-Vizena and Anne M. Burrows 3

2. Assessment and Management of Feeding and Nutrition
 Claire Kane Miller, Brenda Thompson, Jennifer Kobler, and Tamara Rhodes 15

3. Early Speech and Language Development in Children With Cleft Lip and/or Palate
 Adriane L. Baylis and Caitlin E. Cummings 27

4. Audiological Care of the Infant With Cleft Palate
 Briana Kelly Dornan 43

5. Genetic Counseling and Syndromic Considerations
 Melissa D. Kanack, Neda Zadeh, Touran Zadeh, and Raj Vyas 51

Section II. Presurgical Dentofacial Treatment

6. Dynacleft®, Lip Taping, and Passive Molding Appliances
 Daniela Y. S. Tanikawa 63

7. Nasoalveolar Molding
 Barry H. Grayson, Pedro E. Santiago, Mohammad M. Ahmed, and Serena N. Kassam 81

8. Active Dentofacial Orthopedics With Latham-Type Appliances
 Elizabeth Ross, Christopher Ma, Carolyn R. Rogers-Vizena, and James K. MacLaine 95

 Serena N. Kassam, Mohammed M. Ahmed, and Amr M. Moursi 105

Section III. Anesthetic and Pediatric Perioperative Considerations

10. Cleft Lip and Cleft Palate: Anesthetic Considerations
 Dima Daaboul, Pete G. Kovatsis, and Navil F. Sethna 123

11. Perioperative Considerations in Pediatric Cleft Repair
 Marie Nader, Suying Lam, Jennifer Co-Vu, and Jennifer Munoz 133

Section IV. Unilateral Cleft Lip Repair

12. Primary Cleft Lip and Nose: Rotation Advancement and V-Cheiloplasty in Unilateral
 Cleft Lip Repair
 Usama S. Hamdan, Rami S. Kantar, and Antonio Melhem 145
13. Rotation Advancement Repair: Mulliken Modification
 Raj M. Vyas

14. Extended Mohler Repair: Cutting Technique
 Kerry A. Morrison and Roberto L. Flores

15. Unilateral Cleft Lip Repair: Anatomic Subunit Approximation
 Raymond W. Tse, David K. Chong, and David M. Fisher

16. Cleft Lip Repair With Vomerine Flap Closure of the Hard Palate
 Brian Sommerlad

Section V. Bilateral Cleft Lip Repair

17. Synchronous Premaxillary Setback, Vomerine Ostectomy, and Bilateral Lip Repair
 Usama S. Hamdan, Adam B. Johnson, Rami S. Kantar, Elsa M. Chahine, and Omar S. Al Abyad

18. Mulliken Technique for Bilateral Cleft Lip Repair
 Carolyn R. Rogers-Vizena and Alexander C. Allori

 Cassio Eduardo Raposo-Amaral and Cesar Augusto Raposo-Amaral

20. Two-Stage Bilateral Cleft Lip and Palate Repair
 Brian Sommerlad

Section VI. Cleft Palate Repair

21. Cleft Palate Repair With Radical Muscle Dissection
 Brian Sommerlad

22. Modified Furlow Double-Opposing Z-Plasty With Tissue Augmentation Palatoplasty
 Miles J. Pfaff and Joseph E. Losee

23. Minimal Incision Palatoplasty Technique
 Marcia R. Perez Dosal, America Ayuso Arce, and Rafael Villaseñor Caloca

24. Hard Palate Repair With Relaxing Incisions: Two-Flap and Bipedicle Palatoplasty
 Carolyn R. Rogers-Vizena and John G. Meara

25. The Anatomic Cleft Restoration Philosophy With Buccal Flap Approach
 Robert J. Mann

26. Staged Palate Repair: Soft Palate First
 Hans Mark and Jan Lilja

Section VII. Revision Lip and Palate Surgery

27. Oronasal Fistula Repair Surgery
 Mahmoud I. Awad and Krishna G. Patel

28. Secondary Cleft Lip Deformity
 Usama S. Hamdan, Rami S. Kantar, and Omar S. Al Abyad

Section VIII. Secondary Management of Dentoalveolar and Orthognathic Concerns

29. Phase I Dental Orthopedic and Orthodontic Treatment for Cleft Lip and Palate
 Pedro E. Santiago, Daniel Levy, Tiago Turri de Castro, and Ryan Cody
30. Alveolar Bone Grafting and Long-Term Outcomes
 Karen Z. Carver and Bonnie L. Padwa
 389

31. Phase II Dental and Presurgical Orthodontic Treatment
 Douglas Olson and Pradip R. Shetye
 405

32. Determinant of Facial Growth in Cleft Lip and Palate
 Elçin Esenlik and Laura Mancini
 413

33. Orthognatic Correction: Surgery First
 Yu-Ray Chen, Yu-Fang Liao, Chuan-Fong Yao, and Tingchen Lu
 425

34. Orthognathic Correction: Surgery Last
 Connor J. Peck, Joseph Lopez, Jakob Lattanzi, and Derek Steinbacher
 443

35. Prosthetic Rehabilitation of the Cleft Alveolar Gap
 Stephanie J. Drew, Shelly Abramowicz, James Davis Jr., and Steve Roser
 455

Section IX. Cleft Nasal Deformity

36. Primary Rhinoplasty
 Christopher Brooks, Usama S. Hamdan, and Omar S. Al Abyad
 465

37. Secondary Cleft Tip Rhinoplasty
 Beatriz Berenguer, Jesse Taylor, and Anna R. Carlson
 481

38. Definitive Septorhinoplasty in the Cleft Lip Patient
 Grace Lee Peng, Usama S. Hamdan, and Babak Azizzadeh
 499

Section X. Evaluation and Management of Cleft-Related Speech Disorders

39. Evaluation of Speech and Resonance Due to Velopharyngeal Insufficiency (VPI)
 Ann W. Kummer and Mikaela M. Bow
 513

40. The Role of the Speech-Language Pathologist in Cleft Care
 Ann W. Kummer and Mikaela M. Bow
 523

41. Measuring Speech Outcomes
 Debbie Sell and Valerie Pereira
 531

Section XI. Surgical Management of Velopharyngeal Insufficiency (VPI)

42. Posterior Pharyngeal Flap
 Oksana A. Jackson and David W. Low
 549

43. Sphincter Pharyngoplasty
 David W. Low and Oksana A. Jackson
 559

44. Revision Palatoplasty With Intravelar Veloplasty (±) Buccinator Flaps
 Brian C. Sommerlad
 567

45. Revision Palatoplasty With Furlow Double-Opposing Z-Plasty
 Philip Kuo-Ting Chen and Vikram S. Pandit
 581

46. Palatopharyngeal Augmentation
 Monica K. Rossi Meyer and Deborah S. F. Kacmarynski
 595
Section XII. Psychosocial Considerations From Early Childhood to Adulthood

47. Provisions of Psychosocial Care in Cleft Lip and/or Palate: A Global Context
 Martin J. Persson and Matthew Ridley

48. Promoting Resilience in People With Cleft Lip and/or Palate Around the World
 Matthew Ridley and Martin J. Persson

49. Patient and Family Community Resources
 Gareth Davies, Erin Stieber, Ruben Ayala, Hugh Brewster, Jamie Perry, Serena Kassam,
 Taylor Snodgrass, and Usama S. Hamdan

Section XIII. Special Considerations for Outreach Settings

50. Planning and Execution of Overseas Outreach Programs
 Charanya Vijayakumar, Elsa M. Chabine, Rami S. Kantar, Nikbil Shah, Antonio Melhem,
 Omar Al-Abyad, Daniel Jaffurs, Raj M. Vyas, and Usama S. Hamdan

51. Quality Assurance Guidelines for Outreach Cleft Programs
 Elsa M. Chabine, Elie P. Ramly, Alexander P. Marston, Raj M. Vyas, and Usama S. Hamdan

52. Safety and Emergency Preparedness During Overseas Outreach
 Elsa M. Chabine, Antonio Melhem, Raj M. Vyas, and Usama S. Hamdan

53. The Future of Cleft Outreach: In Situ Simulation, Task Training, Augmented Reality, and
 Artificial Intelligence
 Jennifer Munoz Pareja, Marie Nader, Antonio Melhem, Omar S. Al Abyad, Usama S. Hamdan,
 Rami S. Kantar, J. Peter W. Don Griot, Raj M. Vyas, and Corstiaan Breugem

54. Building a Cleft Team
 Gaurav Deshpande and Jordan W. Swanson

Section XIV. Rare Facial Clefts

55. Rare Facial Clefts
 Nivaldo Alonso and Cristiano Tonello

56. Macrostomia: Functional and Aesthetic Repair
 Usama S. Hamdan, Raj M. Vyas, Rami S. Kantar, and Antonio Melhem

Index
The quest for optimal patient outcomes is a driving force for health care professionals. This is especially true for those caring for children and adults born with cleft lip and palate. Significant advances in interdisciplinary cleft care, coupled with exponentially expanding information dissemination, facilitate knowledge sharing and quality improvement on a global level. A remaining aspiration of those involved in cleft care is to “level the playing field” and achieve ideal outcomes at all income and resource levels. That goal inspired the current work.

Through print, illustration, and videography, this book presents the knowledge, skill, and evidence-based practice of an interdisciplinary group of cleft experts from around the world. Lessons from individuals practicing in a variety of cultures and resource environments have been thoughtfully assembled. The resulting work provides the reader with practical and personally vetted solutions for all aspects of cleft care. Highly accurate illustrations by surgeon-artist Dr. David Low and technical videos accompanying this book also enhance the reader’s ability to understand and apply techniques used by the authors to achieve successful outcomes. A multidisciplinary team approach is essential for rendering the best possible cleft care, and we hope this book serves as a catalyst for development of comprehensive cleft programs worldwide.
The editors are grateful to all the children and adults born with cleft lip and palate who were the inspiration for this project and for the lessons they have taught us in perseverance and humility. We are also indebted to the Global Smile Foundation postdoctoral fellows whose efforts made this book possible: Dr. Elsa Chahine, Dr. Antonio Melhem, Dr. Omar Al Abyad, Dr. Mario Haddad, and Dr. Robert Younan. Their initiative, dedication, and perseverance created the momentum needed to transform the idea for this book into reality. We are also incredibly appreciative of our coeditor, Dr. David Low, whose illustrations are found throughout this book. The anatomic detail and surgical accuracy rendered by a practicing cleft surgeon is truly a unique highlight of this book. Finally, we are thankful to our colleague authors, volunteers, and supporters whose tireless energy and focus on providing safe and comprehensive cleft care throughout the world have been instrumental in this undertaking.
Usama S. Hamdan, MD, FICS, is president and cofounder of Global Smile Foundation, a 501(c)(3) Boston-based nonprofit foundation that provides comprehensive and integrated pro bono cleft care for underserved patients throughout the world. He has been involved with outreach cleft programs for over three decades. Dr. Hamdan is an otolaryngologist/facial plastic surgeon with former university appointments at Harvard Medical School, Tufts University School of Medicine, and Boston University School of Medicine. He is also the founder of the International Comprehensive Cleft Care Workshop based on his special interests in simulation-based cleft training, empowerment, and sustainability initiatives for providing comprehensive cleft care as well as quality assurance strategies. For his philanthropic service to the people of Ecuador, he was awarded the knighthood, “Al Merito Atahualpa” En El Grado De Caballero, by the president of Ecuador in March 2005. He received honorary professorship at Universidad de Especialidades Espíritu Santo, School of Medicine, in Ecuador on March 5, 2015, for his contributions in the field of cleft lip and palate.

Carolyn R. Rogers-Vizena, MD, is a pediatric plastic and craniofacial surgeon at Boston Children’s Hospital, assistant professor of surgery at Harvard Medical School, and associate clinical director for special effects and materials science in the Boston Children’s Simulator program. Her clinical areas of expertise include cleft lip and palate, velopharyngeal dysfunction, facial trauma, adolescent breast surgery, and spina bifida. Dr. Rogers-Vizena leads Boston Children’s cleft outcomes program with interinstitutional collaborations nationally and internationally through the International Consortium for Health Outcomes Measurement aimed at optimizing the physical and psychosocial impact of cleft lip and palate. In addition, she has partnered with the Global Smile Foundation to provide cleft care to underserved populations in the Middle East.
Raj M. Vyas, MD, earned his BS in biology with honors and distinction from Stanford University and completed his MD at UCLA, where he was awarded the Stafford L. Warren Medal for most outstanding medical student and the Longmire Medal for most outstanding student in surgery. He then completed integrated plastic surgery residency at Harvard and Craniofacial Fellowship at New York University. Dr. Vyas is a professor of plastic surgery at UC Irvine School of Medicine, where he serves as vice-chair for the Department of Plastic Surgery and chief of pediatric plastic surgery at CHOC Children’s Hospital. His clinical and research interests include characterizing neonatal sleep and breathing disturbances, enhancing recovery after cleft/craniofacial surgery, understanding patient-reported psychosocial outcomes, and using technology to facilitate knowledge and skill transfer. Aligned with his passion for enhancing global capacity for interdisciplinary cleft care, Dr. Vyas is codirector of Global Smile Foundation’s International Research Fellowship and codirector of Research for Plastic Surgery Foundation’s SHARE program (Surgeons in Humanitarian Alliance for Reconstruction Research and Education). Dr. Vyas actively serves on dozens of regional, national, and international cleft committees, hospital consortia, and journal editorial boards.

Brian C. Sommerlad, MBBS, FRCS, qualified in medicine in Sydney, Australia. He went to the United Kingdom in 1968 to further his training and stayed. He is an honorary consultant plastic surgeon at Great Ormond Street Hospital for Children, London. He has been caring for children with clefts for 45 years—in the United Kingdom and by regularly working with colleagues in many less privileged countries over the past 22 years. His ongoing research interests have centered on palate anatomy and function and attempting to improve the speech outcomes of palate repair. He was cofounder in 2007 and is chairman of the U.K. charity CLEFT, which funds research into the causes and treatment of clefts and supports cleft centers in several low-resource countries.

David W. Low, MD, is a professor of surgery at the Perelman School of Medicine at the University of Pennsylvania and attending surgeon in the Division of Plastic Surgery at the Children’s Hospital of Philadelphia. A graduate of Harvard College and Harvard Medical School, he completed all of his surgical training at Penn and was privileged to learn cleft care under the mentorship of Don LaRossa and Peter Randall. He is the medical director of his CHOP-based international cleft team Smiles for Guatemala. In addition to his teaching and patient care responsibilities, he is a board-certified medical illustrator whose work appears in many medical journals and textbooks.
Contributors

Shelly Abramowicz, DMD, MPH, FACS
Associate Professor in Surgery and Pediatrics
Department of Surgery, Division of Oral and Maxillofacial Surgery
Emory University School of Medicine
Chief of Oral and Maxillofacial Surgery
Children’s Healthcare of Atlanta
Atlanta, Georgia
Chapter 35

Mohammad M. Ahmed, DDS, MS
Diplomate
American Board of Pediatric Dentistry
Fellowship
Craniofacial Pediatric Dentistry
Consultant
Dubai Health Authority
Dubai, United Arab Emirates
Chapters 7 and 9

Omar S. Al Abyad, MD
Postdoctoral Research Fellow
Global Smile Foundation
Norwood, Massachusetts
Chapters 17, 28, 36, 50, and 53

Alexander C. Allori, MD, MPH
Assistant Professor of Surgery
Division of Plastic, Maxillofacial, and Oral Surgery
Duke University School of Medicine and Duke Children’s Hospital
Durham, North Carolina
Chapter 18

Nivaldo Alonso, MD, PhD
Associate Professor
Faculda De Medicina Universidade de São Paulo
Responsible for Craniofacial Service–HRAC–BAURU
Universidade de São Paulo
São Paulo, Brazil
Chapter 55

Mahmoud Issam Awad, MD
Fellow in Facial Plastic and Reconstructive Surgery
Department of Otolaryngology-Head and Neck Surgery
Medical University of South Carolina
Charleston, South Carolina
Chapter 27

Ruben E. Ayala, MD, MSc
Chief Medical Officer
Operation Smile, Inc.
Virginia Beach, Virginia
President of the Permanent Council
The Global Alliance for Surgical, Obstetric, Trauma, and Anesthesia Care
Chicago, Illinois
Chapter 49

America Ayuso Arce, DDS, MSc
Private Practice
Chapter 23

Babak Azizzadeh, MD, FACS
Director
Center for Advanced Facial Plastic Surgery
Beverly Hills, California
Chapter 38

Adriane L. Baylis, PhD, CCC-SLP
Associate Professor-Clinical
Department of Plastic and Reconstructive Surgery
Nationwide Children's Hospital and The Ohio State University College of Medicine
Columbus, Ohio
Chapter 3

Beatriz Berenguer, MD, PhD
Assistant Professor
Division of Pediatric Plastic Surgery
Hospital General Universitario Gregorio Marañón
Madrid, Spain
Chapter 37
Mikaela M. Bow, BSp Path, CPSP
Speech Pathologist
Global Smile Foundation
University of Sydney
Sydney, Australia
Chapters 39 and 40

Corstiaan Breugem, MD, PhD
Professor in Plastic Surgery
Emma Children’s Hospital, Amsterdam University Medical Center
University of Amsterdam
Amsterdam, Netherlands
Chapter 53

Hugh T. Brewster, MEd
Executive Director
Transforming Faces
Toronto, Ontario
Chapter 49

Christopher J. M. Brooks, MD, FACS
Chief of Plastic Surgery
Vice Chief of Surgery
Joe DiMaggio Children’s Hospital
Hollywood, Florida
Chapter 36

Anne M. Burrows, PhD
Professor
Department of Physical Therapy
Duquesne University
Pittsburgh, Pennsylvania
Chapter 1

Anna Rose Carlson, MD
Fellow in Craniofacial Surgery
The Children’s Hospital of Philadelphia
Division of Plastic and Reconstructive Surgery
Philadelphia, Pennsylvania
Chapter 37

Karen Z. Carver, DDS, MD, MPH
Cleft and Craniofacial Fellow
Department of Plastic and Oral Surgery
Boston Children’s Hospital
Boston, Massachusetts
Chapter 30

Elsa M. Chahine, MD
Global Smile Foundation
Norwood, Massachusetts
Chapters 17, 50, 51, and 52

Yu-Ray Chen, MD
Professor
Department of Plastic and Reconstructive Surgery
Chang Gung University and Chang Gung Memorial Hospital
Taoyuan, Taiwan
Chapter 33

Philip Kuo-Ting Chen, MD
Professor in Surgery, Taipei Medical University
Director, Craniofacial Center
Taipei Medical University Hospital
Taipei, Taiwan
Chapter 45

David K. Chong, MBBS, FACS
Plastic and Maxillofacial Department
Royal Children’s Hospital
Melbourne, Australia
Chapter 15

Jennifer Co-Vu, MD, FACC, FAAP
Associate Professor of Pediatrics, Radiology, Obstetrics, and Gynecology
Director, Fetal Cardiac Program and Single Ventricle Program
University of Florida
Gainesville, Florida
Chapter 11

Ryan J. Cody, DDS
Dentist and Orthodontic Resident
Department of Orthodontics
University of Texas Health Science Center at Houston
Houston, Texas
Chapter 29

Caitlin E. Cummings, MA, CCC-SLP
Speech-Language Pathologist
Department of Speech Pathology
Nationwide Children’s Hospital
Columbus, Ohio
Chapter 3

Dima G. Daaboul, MD
Associate in Cardiac Anesthesia
Department of Anesthesiology, Critical Care, and Pain Medicine
Instructor of Anesthesia, Harvard Medical School
Boston Children’s Hospital
Boston, Massachusetts
Chapter 10
Gareth Davies, BA(Hons)
Executive Director
European Cleft Organisation
Rijswijk, Netherlands
Chapter 49

James A. Davis Jr., DMD
Maxillofacial Prosthodontist
Oro-facial Center
Adjunct Professor of Emory University
Department of Oral and Maxillofacial Surgery
Emory, Georgia
Chapter 35

Tiago Turri de Castro Ribeiro, PhD, MSc, DDS
Orthodontist
Department of Orthodontics
Hospital for Rehabilitation of Craniofacial Anomalies
University of São Paulo (HRAC-USP)
Bauru, São Paulo, Brazil
Chapter 29

Gaurav Deshpande, MDS
In-Charge, “Maaya” Cleft and Craniofacial Unit
MGM Hospital
Navi Mumbai, India
Associate Professor, Department of Oral and Maxillofacial Surgery
MGM Dental College and Hospital
Navi Mumbai, India
Clinical Assistant Professor
Division of Plastic and Reconstructive Surgery
Penn State Hershey School of Medicine
Hershey, Pennsylvania
Chapter 54

J. Peter W. Don Griot
Plastic Surgeon, Director of the Cleft Program
Amsterdam
Department of Plastic, Reconstructive and Hand Surgery
Amsterdam UMC, location AMC
Amsterdam, The Netherlands
Chapter 53

Briana Kelly Dornan, AuD, CCC-A
Audiologist
Boston Children’s Hospital
Boston, Massachusetts
Chapter 4

Marcia R. Pérez Dosal, MD, MSc, PhD
Assistant Professor
Department of Plastic Surgery
Pediatric National Institute
Mexico City, Mexico
Chapter 23

Stephanie J. Drew, DMD, FACS
Associate Professor Department of Surgery
Division of Oral and Maxillofacial Surgery
Emory School of Medicine
Atlanta, Georgia
Chapter 35

Elcin Esenlik, DDS, PhD
Professor Doctor and Chair of the Orthodontic Department
Faculty of Dentistry
Akdeniz University
Antalya, Turkey
Chapter 32

David Malcolm Fisher, MB, BCh, FRCSC, FACS, BFA
Plastic Surgeon, Hospital for Sick Children
Professor, Department of Surgery
University of Toronto
Toronto, Ontario
Chapter 15

Roberto L. Flores, MD
Joseph G. McCarthy Associate Professor of Reconstructive Plastic Surgery
Director, Cleft Lip and Palate
Hansjorg Wyss Department of Plastic Surgery
New York University Langone Health
New York, New York
Chapter 14

Barry H. Grayson, DDS
Clinical Associate Professor of Plastic Surgery (Craniofacial Orthodontics)
Department of Plastic Surgery
New York University Langone Medical Center
New York, New York
Chapter 7

Usama S. Hamdan, MD, FICS
President and Cofounder, Global Smile Foundation
Norwood, Massachusetts
Chapters 12, 17, 28, 36, 38, 49, 50, 51, 52, 53, and 56
Medford, Massachusetts

Chapter 34

Daniel Levy-Bercowski, DDS, MS, MSD
Professor
Department of Orthodontics
The Dental College of Georgia, Augusta University
Augusta, Georgia

Chapter 29

Yu-Fang Liao, DDS, PhD
Professor
Department of Craniofacial Orthodontics
Chang Gung Memorial Hospital
Graduate Institute of Dental and Craniofacial Science
Chang Gung University
Taoyuan, Taiwan

Chapter 33

Jan Lilja, MD, DDS, PhD
Associate Professor
Department of Plastic Surgery
Sahlgrenska University Hospital
University of Gothenburg
Gothenburg, Sweden

Chapter 26

Joseph Lopez, MD, MBA
Craniomaxillofacial Fellow
Clinical Instructor
Yale-New Haven Children’s Hospital
Yale School of Medicine
New Haven, Connecticut

Chapter 34

Joseph E. Losee, MD, FACS, FAAP
Dr. Ross H. Musgrave Endowed Chair in Pediatric Plastic Surgery
Associate Dean for Faculty Affairs
University of Pittsburgh School of Medicine
Professor and Executive Vice Chair
Department of Plastic Surgery
Division Chief
Pediatric Plastic Surgery
UPMC Children’s Hospital of Pittsburgh
Pittsburgh, Pennsylvania

Chapter 22

David W. Low, MD
Professor of Surgery
Division of Plastic Surgery
Perelman School of Medicine at the University of Pennsylvania

Chapter 34

The Children's Hospital of Philadelphia
Philadelphia, Pennsylvania

Chapters 42 and 43

Tingchen Lu, MD
Assistant Professor
Craniofacial Center
Department of Plastic and Reconstructive Surgery
Chang Gung Memorial Hospital
Linkou, Taiwan

Chapter 33

Christopher Ma
DMD Candidate
Harvard School of Dental Medicine
Boston, Massachusetts

Chapter 8

James K. MacLaine, BDS, FDS Orth RCSEd
Craniofacial Orthodontist
Boston Children’s Hospital
Instructor
Harvard School of Dental Medicine
Boston, Massachusetts

Chapter 8

Laura Mancini, DMD, MSD, FRCD(C)
Craniofacial Orthodontist
CHU Sainte-Justine Hospital
Private Practice Ortho NDG
Montreal, Quebec, Canada

Chapter 32

Robert Joseph Mann, MD
Assistant Clinical Professor
Surgery and Pediatrics
Michigan State University
College of Human Medicine
Emeritus Director
Oral Cleft Program
Helen DeVos Children’s Hospital
Grand Rapids, Michigan

Chapter 25

Hans Mark, MD, PhD
Associate Professor
Department of Plastic Surgery
Sahlgrenska University Hospital
Institute of Clinical Sciences at Sahlgrenska Academy
University of Gothenburg
Gothenburg, Sweden

Chapter 26
Alexander P. Marston, MD
Assistant Professor
Department of Otolaryngology-Head and Neck Surgery
Tufts University School of Medicine
Tufts Medical Center
Boston, Massachusetts
Chapter 51

John G. Meara, MD, DMD, MBA
Plastic Surgeon-in-Chief
Boston Children's Hospital
Kletjian Professor of Global Surgery
Harvard Medical School
Boston, Massachusetts
Chapter 24

Antonio Melhem, MD
Postdoctoral Research Fellow
Global Smile Foundation
Norwood, Massachusetts
Chapters 12, 50, 52, 53, and 56

Claire Kane Miller, PhD, MHA
Program Director
Aerodigestive and Esophageal Center
Cincinnati Children's Hospital Medical Center
Cincinnati, Ohio
Chapter 2

Kerry A. Morrison, MD
Plastic Surgery Resident Physician
Hansjörg Wyss Department of Plastic Surgery
New York University Langone Health
New York, New York
Chapter 14

Amr M. Moursi, DDS, PhD
Professor and Chair
Department of Pediatric Dentistry
College of Dentistry, New York University
New York, New York
Chapter 9

Jennifer Munoz, MD
Associate Professor
Pediatric Critical Care
University of Florida
Gainesville, Florida
Chapters 11 and 53

Marie Nader, MD
Pediatric Critical Care Fellow
Yale-New Haven Hospital
New Haven, Connecticut
Chapters 11 and 53

Douglas P. Olson, DMD, MS
Director
Children's Hospital of Orange County
Children's Division of Craniofacial Orthodontics
Orange, California
Chapter 31

Bonnie L. Padwa, DMD, MD
Oral Surgeon-in-Chief
Department of Plastic and Oral Surgery
Boston Children's Hospital
Professor of Oral and Maxillofacial Surgery
Harvard School of Dental Medicine and Harvard Medical School
Boston, Massachusetts
Chapter 30

Vikram S. Pandit, BDS, MDS
Consultant Oral and Maxillofacial Surgeon
Pandit Clinic
Pune, Maharashtra, India
Chapter 45

Krishna G. Patel, MD, PhD
Professor
Director of Facial Plastic and Reconstructive Surgery
Medical University of South Carolina
Charleston, South Carolina
Chapter 27

Connor J. Peck, BS
Department of Surgery, Division of Plastic Surgery
Yale School of Medicine
New Haven, Connecticut
Chapter 34

Grace Lee Peng, MD, FACS
Facial Plastic and Reconstructive Surgery
Beverly Hills, California
Chapter 38

Valerie J. Pereira, PhD
Senior Lecturer
Department of Otorhinolaryngology-Head and Neck Surgery
Faculty of Medicine
The Chinese University of Hong Kong
Hong Kong SAR, China
Chapter 41

Jamie L. Perry, PhD, CCC-SLP
Department Chair and Professor
Department of Communication Sciences and Disorders
East Carolina University
Greenville, North Carolina
Chapter 49

Martin J. Persson, PhD, MPH, MSc
Professor of Health Sciences
Faculty of Health Sciences
Kristianstad University
Kristianstad, Sweden
Chapters 47 and 48

Miles J. Pfaff, MD, MHS
Cleft and Craniofacial Surgery Fellow
Clinical Instructor
UPMC Children’s Hospital of Pittsburgh
Pittsburgh, Pennsylvania
Chapter 22

Elie P. Ramly, MD
Surgery Resident
Department of Surgery
Oregon Health and Science University
Portland, Oregon
Chapter 51

Cassio Eduardo Raposo-Amaral, MD, PhD
Medical Director Hospital SOBRAPAR
President of Brazilian Association of Craniofacial Surgery
Professor of Neurosurgery Department University of Campinas–UNICAMP
Vice President of Latin American Craniofacial Association (LATICFA)
Campinas, São Paulo, Brazil
Chapter 19

Cesar Augusto Raposo-Amaral, MD
Plastic Surgeon
SOBRAPAR’s Clinical Director
Campinas, São Paulo, Brazil
Chapter 19

Tamara Rhodes, MS, RD, CSP, LD
Pediatric Clinical Dietitian
Cincinnati Children’s Hospital Medical Center
Cincinnati, Ohio
Chapter 2

Matthew Ridley, PhD
Chartered Research Psychologist
Norton, Stockton-on-Tees, England
Chapters 47 and 48

Carolyn R. Rogers-Vizena, MD
Attending in Plastic and Oral Surgery
Boston Children’s Hospital
Assistant Professor
Harvard Medical School
Boston, Massachusetts
Chapters 1, 8, 18, and 24

Steven M. Roser, DMD, MD, FACS, FRCS(Ed)
DeLos Hill Chair and Professor of Surgery
Division of Oral and Maxillofacial Surgery
Department of Surgery
Emory University School of Medicine
Atlanta, Georgia
Chapter 35

Elizabeth J. Ross, DDS, FRCS(C)
Department of Dentistry
Boston Children’s Hospital
Boston, Massachusetts
Chapter 8

Monica K. Rossi Meyer, MD
Resident Physician
Department of Otolaryngology-Head and Neck Surgery
University of Iowa
Iowa City, Iowa
Chapter 46

Pedro E. Santiago, DMD, MBA
Director of Oral Health
Director of Craniofacial Orthodontics
Division of Plastic, Maxillofacial and Oral Surgery
Duke University
Durham, North Carolina
Chapters 7 and 29

Debbie Sell, OBE, PhD
Senior Research Fellow
Independent Consultant Speech and Language Therapist
Codirector, Speech @ Home
London, United Kingdom
Chapter 41
Associate Professor
University of Washington
Seattle, Washington
Chapter 15

Charanya Vijayakumar, BDS, MDS
Senior Lecturer in Cleft and Craniofacial Surgery
Cleft and Craniofacial Center
Department of Plastic and Reconstructive Surgery
Sri Ramachandra Institute of Higher Education and Research (SRIHER)
Porur, Chennai, India
Chapter 50

Rafael Villaseñor Caloca, MD, MHA
Assistant Professor
Department of Plastic and Reconstructive Surgery
Instituto Nacional de Pediatría
Mexico City, Mexico
Chapter 23

Raj M. Vyas, MD, FACS
Vice-Chairman and Professor of Plastic Surgery
Department of Plastic Surgery
University of California, Irvine
Irvine, California

Chief
Children’s Division of Pediatric Plastic Surgery
Children’s Hospital of Orange County
Orange, California
Chapters 5, 13, 50, 51, 52, 53, and 56

Chuan-Fong Yao, MD
Craniofacial Center
Department of Plastic and Reconstructive Surgery
Chang Gung Memorial Hospital
Linkou, Taiwan
Chapter 33

Touran M. Zadeh, MD
Division of Medical Genetics
Children’s Hospital of Orange County Genetics Center
Orange, California
Chapter 5

Neda Zadeh, MD
Division of Medical Genetics
Children’s Hospital of Orange County Genetics Center
Orange, California
Chapter 5
Introduction

Shape and form of the human face is rooted in early embryonic development. Similarly, cleft lip and/or palate (CL/P) begins with malformation early in embryonic development that persists as tissues differentiate and development progresses. This chapter will provide the embryologic and anatomic foundation necessary to understand CL/P pathology. In addition, common classification systems used to describe and document the extent of anatomic findings in CL/P will be presented to foster consistent language for communicating CL/P phenotype.

Embryology

Knowledge of normal facial embryology is important for understanding the underlying basis of craniofacial anomalies such as CL/P. Basic morphology of the face is established between the 4th and 8th embryonic weeks, developing from five primordia surrounding a central stomodeum (primitive mouth). These primordia include a single midline frontonasal prominence (FNP), paired maxillary prominences, and paired mandibular prominences. These prominences undergo mostly symmetrical growth followed by subsequent fusion to form the face.

Development of the Face

During the 4th week, the stomodeum invaginates, and nasal pits, or placodes, form in the FNP. In the 5th week, medial and lateral nasal processes form around the nasal pits (Figure 1–1). The FNP gives rise to the nose, philtrum, primary palate, perpendicular plate of the ethmoid bone and vomer (nasal septum), cribriform plates, and forehead. The medial nasal processes go on to form the nasal tip, columella, philtrum, and premaxilla/primary palate (central portion of the alveolus and anterior hard palate, including the central and lateral incisors). The lateral nasal processes form the nasal alae. Concomitant with FNP development, the first pharyngeal arch forms paired maxillary prominences that enlarge and migrate ventrally. The maxillary prominences give rise to the upper cheek and most of the upper lip, maxilla, zygoma, and secondary palate. The medial nasal processes and maxillary prominences fuse to form a continuous upper lip and primary palate by the end of the 6th week (Sperber et al., 2001). Disrupted fusion of the medial nasal process and maxillary prominence results in cleft lip and alveolus (Larrabee et al., 2004).

Development of the Palate

The palate develops between the 6th and 12th weeks from a single midline nasal septum originating on the
FNP and paired lateral palatine processes originating on the maxillary prominences (see Figure 1–1). The palatine processes grow inferiorly, lateral to the developing tongue. As the maxilla and mandible develop and enlarge, the tongue moves caudally, permitting the palatine processes to elevate into a horizontal position (known as “palatal shelves”) during the 7th and 8th weeks. The palatal shelves fuse with the primary palate in a Y-shaped configuration, with the apex forming the incisive foramen in the 6th and 7th weeks. Posterior to the incisive foramen, the palatal shelves fuse with each other and with the nasal septum starting anteriorly and extending posteriorly beginning around the 8th week and ending by the 12th week. Ossification of the primary palate and anterior secondary palate forms the hard palate. The posterior secondary palate does not ossify and forms the soft palate and uvula (Sperber et al., 2001). Failure of the palatal shelves to elevate and fuse at the midline results in a cleft palate (Larrabee et al., 2004).

Normal Lip and Nasal Anatomy

Upper lip surface anatomy reflects its embryologic formation and underlying muscular anatomy. Understanding key surface landmarks is critical for properly designing a cleft lip repair (Figure 1–2). The columellar-labial junction is the intersection between the columnella and superior part of the upper lip. Inferior to this is the philtral dimple, a cutaneous indentation in the center of the upper lip. The philtral ridges are raised areas of skin flanking the philtral dimple on either side. They extend inferiorly to elevated areas of vermilion called the peaks of Cupid’s bow. Between these two elevated areas is a vermilion depression, the low point or nadir of Cupid’s bow. The white roll is a raised area of skin just superior to the vermilion. The red line represents the transition from dry,
1. Embryology, Anatomy, and Classification of Cleft Lip and Palate

The keratinized vermillion extends from the labial mucosa. Finally, the median tubercle is the prominence at the most inferior extent of the upper lip.

In a normal upper and lower lip, the orbicularis oris muscle (OOM) extends from modiolus to modiolus (the confluence of facial muscles lateral to the oral commissure), creating a muscular sphincter. There are two major OOM subdivisions in the upper lip, the pars marginalis (inferior) and the pars peripheralis (superior). Pars marginalis is a continuous band of muscle fibers while pars peripheralis fibers decussate at the midline with fibers from the contralateral side inserting deep to dermis of the contralateral philtral ridge (Figure 1–3). This forms the underlying muscular architecture of the philtral ridges and dimple but is not the only factor contributing to philtral shape. Thickened dermis and connective tissue are present at the ridges, and there is a paucity of connective tissue at the dimple. In cross section, the configuration of the OOM is a subtle “J” shape with the distal tip of the “J” lying deep to the white roll and contributing to its raised appearance (Rogers et al., 2014).

In the normal nose, three-dimensional shape is primarily supported by the paired lower and upper lateral cartilages as well as the single midline cartilaginous septum (see Figure 1–3). The arch-shaped lower lateral cartilages are conceptualized as three sections. Inferiorly, the medial crura are narrow portions of the arch beginning superficial to the anterior nasal spine and extending along the inferior border.
of the septum, before bending laterally. This bend, or genu, is called the middle crus and supports the nasal tip. The cartilages widen, extending superolaterally from the genua as the lateral crura, providing soft tissue support to the lateral nasal tip and alae. The upper lateral cartilages lie superior to the lower lateral cartilages and extend laterally from the septum supporting the middle vault of the nose. The midline nasal septum supports the dorsum of the nose and separates the two nasal vaults. It intersects posteriorly with the perpendicular plate of the ethmoid bone (superior) and the vomer (inferior), which merges with the hard palate (Fisher & Mann, 1998).

The major blood supply to the upper lip and nose arises from branches of the paired facial arteries (Figure 1–4). The upper lip is primarily supplied by the superior labial branches. Beyond the superior labial branch point, the facial artery continues as the lateral nasal artery to supply to the nasal tip. The superior labial arteries anastomose with each other at the midline and give off septal and columellar branches. The columellar branches anastomose with the dorsal and lateral nasal arteries. The clinical significance of this rich anastomotic network is that the lip and nose remain well perfused despite disruption of major vascular branches.

Sensory innervation of the lip and nose comes from branches of the trigeminal nerve (cranial nerve V), primarily the infraorbital branch of the maxillary nerve, but with contribution from the external nasal branch of the ophthalmic nerve. These branches are amenable to regional anesthetic block during cleft lip repair (see Chapter 12).

The skeletal structures most relevant to a cleft lip are portions of the maxilla (Figure 1–5). These form the inferior borders of the piriform aperture that encompasses the nasal cavity. Anteriorly, a midline outcropping called the anterior nasal spine supports the nasal tip, columella, and superior upper lip. The maxilla also comprises the tooth-bearing alveolus and anterior hard palate.

Cleft Lip/Nasal Anatomy

Cleft lip involves structures of the lip, nose, and primary palate. Nasolabial tissue is malformed, rather than deficient. In a unilateral cleft, the nasal tip and ala on the cleft side are displaced inferiorly and posterolaterally, corresponding to deformity of the underlying lower lateral cartilage and maxilla. The arch of the genu is widened and lateral crus inferiorly and posterolaterally positioned (see Figure 1–3). In more severe unilateral clefts, the lateral crus has a downward deflection or “recurvatum.” The anterior nasal spine and caudal septum deviate away from the cleft and the mid-septum bows toward the cleft (Fisher & Sommerlad, 2011). The lip is divided where the philtral ridge should be, extending through the peak of Cupid’s bow and vermillion. This division may be incomplete, including only the inferior margin of the lip, or complete, extending all the way
into the floor of the nose. On the labial surface, the vermilion narrows beyond where the peak of Cupid's bow should be, with the vermilion-cutaneous junction and vermilion-mucosal junction eventually converging along the margin of the cleft. In a complete cleft, the OOM is discontinuous, whereas there may be superior bridging fibers in an incomplete cleft. Orbicularis oris muscle fibers are oriented toward the alar base lateral to the cleft and columella medial to the cleft (see Figure 1–3). With increasing cleft severity, the philtral dimple effaces but remains present, in contrast to a bilateral cleft. The philtral ridge remains present on the noncleft side (Rogers et al., 2014). The superior labial artery is discontinuous, oriented along the cleft margin (see Figure 1–4). The underlying maxillary alveolus is protuberant on the noncleft side and may be collapsed on the cleft side (see Figure 1–5). The lateral incisor tooth is often absent on the cleft side, but particularly in the setting of an incomplete cleft, there may be an abnormal lateral incisor or supernumerary tooth.

In a bilateral cleft lip, the nasal tip is broad and flat, with both lower lateral cartilages having the abnormal configuration described for the cleft side in a unilateral cleft lip (see Figure 1–3). In a symmetric bilateral cleft lip, the septum and anterior nasal spine are midline, but in some cases, a bilateral cleft is asymmetric with corresponding deviation. The lip is divided at the area of the philtral ridge bilaterally. The central soft tissue element, the prolabium, has narrow vermilion and lacks a white roll in a complete cleft. The lateral lip vermilion deformity is analogous to the cleft side in a unilateral cleft lip. Orbicularis oris muscle fibers are oriented toward both alar bases laterally (see Figure 1–3). In a bilateral complete cleft lip, the prolabium lacks muscle tissue and the philtral dimple is completely effaced, whereas in a bilateral incomplete cleft lip, a small amount of OOM may bridge the prolabium and a subtle philtral dimple may be present. The superior labial arteries supply lateral lip elements, while the columellar and posterior septal arteries supply the prolabium (see Figure 1–4). Prolabial blood supply is critical to bear in mind when designing a bilateral cleft lip repair. When there is a complete alveolar cleft, the premaxilla is protuberant due to excessive anterior growth at the premaxillary-vomerine suture and the lateral alveolar segments collapsed (see Figure 1–5). Blood supply to the premaxilla comes primarily from branches of the posterior septal and anterior ethmoidal arteries,
an important consideration during premaxillary setback. The lateral incisors may be absent, abnormal, or supernumerary teeth may be present bilaterally.

Normal Palatal Anatomy

The anterior two thirds of the hard palate is formed by paired palatine processes of the maxilla. The posterior third, mesial to the tooth-bearing alveolus, is formed by the paired palatine bones. Superiorly, the hard palate and vomer articulate supporting the nasal floor. The incisive foramen is located at the midline, just posterior to the alveolus at the junction of the primary and secondary palate. Structures anterior to the incisive foramen are considered the primary palate, and structures posterior to it, the secondary palate.

The soft palate, or velum, is located posterior to the hard palate (Figure 1–6). It is a muscular sling formed by the paired levator veli palatini, palatopharyngeus, palatoglossus, and musculus uvuli, reinforced by the aponeurosis of the tensor veli palatini muscles. The levator in particular extends from the temporal bone into the velum and acts as the primary elevator of the soft palate during speech, whereas the palatoglossus and palatopharyngeus muscles elevate the posterior tongue and lateral pharyngeal walls while drawing the soft palate inferiorly to propel the food bolus during deglutition. Together with the superior constrictor muscle in the pharynx, these muscles form the velopharyngeal sphincter that provides dynamic separation of the oro- and nasopharynx during deglutition and speech. In addition, the tensor veli palatini acts as the principal dilator of the Eustachian tube, with further input from the levator veli palati, salpingopharyngeus, and tensor tympani muscles (Cho et al., 2013).

Palatal and velopharyngeal blood supply comes from branches of the paired maxillary arteries, ascending pharyngeal arteries, and ascending pala-

FIGURE 1–6. Palatal anatomy—normal anatomy from intraoral (left) and sagittal (right) views. Deep to the glandular submucosa of the soft palate, the palatoglossus and palatopharyngeus muscles enter. The levator enters deep to these muscles but interdigitates with them, approaching the midline to form the velopharyngeal sling. The tensor tendon wraps around the pterygoid hamulus, spreading into a broad aponeurosis approaching the midline. The musculus uvulae is primarily located on the deep/nasal surface of the velopharyngeal sling, extending from the tensor aponeurosis to the uvula.
tine arteries. The soft palate has a rich blood supply from branches of these arteries. The hard palate mucoperiosteum is primarily supplied by the greater palatine branches of the maxillary artery, an important consideration during cleft palate repair.

Hard palate sensory innervation comes from the greater palatine and nasopalatine branches of the maxillary nerve while soft palate sensation is from the lesser palatine branch of the maxillary nerve. The maxillary nerve is a branch of the trigeminal nerve amenable to regional anesthetic block at the pterygopalatine fossa (see Chapter 10).

Cleft Palate Anatomy

Cleft palate involves structures of the secondary palate. When the hard palate is cleft, the maxillary and palatine bones are separated both from the contralateral side and from the vomer, resulting in communication between the oro- and nasopharynx. When the soft palate is cleft, there is a midline separation of the velum (Figure 1–7). The tensor veli palatini aponeuroses, levator veli palatini, palatoglossus, and palatopharyngeus muscles are discontinuous with each other and disoriented anteriorly. The tensor aponeuroses inserts on the posterolateral hard palate, while the palatoglossus and palatopharyngeus muscles insert on the posteromedial hard palate and cleft edge. The levator runs parallel to the other velar muscles but fails to reach the midline (Fisher & Sommerlad, 2011). Thus, these muscles fail to interdigitate and form the dynamic sling needed to control oronasal airflow and facilitate Eustachian tube function.

Submucous cleft palate, a lesser form of cleft palate, involves muscular diastasis of the soft palate with intact mucosa. The diastasis may be visualized as a bluish “zona pellucida,” or furrow, in the soft palate. Other findings may include bifid uvula and/or notch in the posterior hard palate (Calnan, 1954). This type of cleft is often diagnosed during evaluation of abnormal speech.

Phenotypic Spectrum and Classification

The wide phenotypic variation of CL/P has inspired numerous systems for describing the extent of the defect. The classifications described here are not all-inclusive but are some of the most commonly used ways to document clefting.
Cleft Lip

Cleft lip is broadly classified as unilateral (one-sided) or bilateral (two-sided) and further categorized by the extent of the discontinuity. Complete cleft lip involves a separation extending from the lip margin through the nasal floor. In an incomplete cleft lip, there is separation at the free margin of the lip with a superior connection, ranging from a thin skin bridge or band to a substantial musculocutaneous connection. Lesser forms of incomplete cleft lip involve smaller degrees of disruption of the vermilion-cutaneous junction at the peak of Cupid’s bow: mini-microform (notch of the vermilion-cutaneous junction without elevation of the peak of Cupid's bow), microform (disruption of the free margin of the lip with <3 mm elevation of the peak of Cupid’s bow), and minor form (disruption of the free margin of the lip with 3 to 5 mm elevation of the peak of Cupid’s bow). Classifying a labial cleft according to these descriptive terms is useful for both verbally communicating the degree of clefting and determining extent of the lip repair (Yuzuriha & Mulliken, 2008).

Cleft Palate

Cleft palate is often described using the Veau classification (Figure 1–8), allowing clinicians to communicate the anatomic nature of the defect. A Veau I cleft involves the soft palate only, a Veau II cleft includes the hard and soft palate, a Veau III extends unilaterally along the junction of the primary and secondary palate (i.e., a unilateral complete cleft lip and palate),