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PREFACE

I have been teaching auditory electrophysiology to 
graduate students and conducting research using 
electrophysiologic measures for over 30 years 
now. My complaining about the appropriateness 
of the available textbooks for my classes (in terms 
of the organization of the content, the appropriate 
level, the appropriate depth, and the right balance 
between theory and clinical applications most rel-
evant to the students) has steadily increased over 
the years. Finally, I thought it was time to stop 
complaining and do something about it. Thus, this 
undertaking is an attempt to address my objectives 
and to stop my decades-long complaining. How-
ever, this attempt should not be construed as a 
negative reflection on several excellent resources 
already provided by my colleagues in the field.

This book is primarily intended to serve as 
a prescribed textbook for graduate-level electro-
physiology course(s) for AuD and PhD students. 
However, its contents should also be of interest  
to researchers using auditory evoked potentials to  
complex sounds (envelope following response [EFR] 
and frequency following response [FFR]) to address 
questions relevant to the neural representation of 
complex sounds and how they may be altered by 
experience, training, and hearing impairment. 
The main aim is to provide an organized, coher-
ent, sufficient, and reasonably up-to-date (but not 
exhaustive) account of relevant literature about the 
principles related to the neural bases, response char-
acteristics, and specific clinical and research appli-
cations of the auditory evoked brainstem potentials. 
The goal is twofold: (a) to foster an understanding 
of how these measures reflect the neuroanatomi-
cal and functional organization of the auditory 
system from the periphery through the brainstem, 
and (b) to develop an appreciation for the struc-
ture-function relationship and the consequences 
of an impairment on this relationship that may be 
reflected in these measures. It is my firm belief that 
such knowledge integrated into the clinical practice 

is essential to be able to “practice at the top of your 
license,” rather than merely be a technician. Finally, 
the level of technical detail presented was deliber-
ately reduced (without filtering out important infor-
mation) to encourage the reader to remain focused 
on learning the essentials of the relevant informa-
tion. However, inquiring minds can always pursue 
the listed references to quench their thirst.

The contents are organized in a coherent man-
ner by first providing a sufficient overview of the 
nature of the neuroanatomical organization of the 
structures and pathways in the auditory periph-
ery and the brainstem (Chapter 1) followed by a 
review of neuronal physiology and the neural 
bases of auditory evoked potentials (Chapter 2). 
Since structure and function are closely related, 
knowledge of the structural organization and the 
neural bases of these responses will help the clini-
cian to understand the functional consequences of 
a structural abnormality, enabling the development 
of better clinical management strategies. Chapter 3 
provides a complete description of stimulus char-
acteristics and principles of evoked potential data 
acquisition. This is followed by a description of 
the normative aspects of the auditory brainstem 
response (ABR) as it relates to stimulus, recording, 
and subject factors (Chapter 4). This knowledge 
is a prerequisite to set up the normative database 
required to interpret these responses as normal or 
abnormal in clinical diagnosis. A complete descrip-
tion of audiologic applications of the ABR for hear-
ing screening for early identification of hearing 
loss and frequency-specific estimation of hearing 
thresholds or minimum hearing levels is provided 
in Chapter 5. While there is no single standard pro-
tocol for each application across clinics to date, the 
latest developments relevant to hearing screening 
and frequency-specific threshold estimation move 
toward the development of effective and efficient 
protocols that employ next-generation technology 
to both increase accuracy and reduce test time. 
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Chapter 6 examines the clinical utility of the ABR 
to differentiate hearing losses resulting from struc-
tural abnormalities in the conductive mechanism, 
sensory-to-neural transduction in the cochlea, and 
synaptic processing and neural transmission in the 
auditory nerve and brainstem. In terms of neuro-
otologic applications, the use of cochlear receptor 
potentials (cochlear microphonic [CM] and sum-
mating potential [SP]) and the auditory nerve 
compound action potential (AN-CAP) to evaluate 
the functional integrity of the inner ear outer hair 
cell subsystem and the auditory nerve for differ-
ential diagnosis, and for neural function moni-
toring during surgeries that involve the auditory 
nerve and the brainstem, is examined in Chapter 7. 
This includes a description of the use of AN-CAP 
recorded directly from the auditory nerve and/or 
the cochlear nucleus, and the scalp-recorded ABR 
in intraoperative monitoring to minimize surgi-
cally induced permanent injuries, and to attempt 
preservation of hearing. In the next two chapters 
(Chapters 8 and 9), the clinical utility and research 
utility of the emerging brainstem evoked poten-
tials generated by complex sounds (EFR and FFR) 
including speech are described. Since both these 
responses provide information about the nature of 
the temporal neural encoding of certain acoustic 
features important for the perception of complex 
sounds, they can potentially serve as effective elec-
trophysiologic measures to evaluate the nature of 
degradation of these features in individuals with 
hearing impairment consequent to cochlear and/or 
retrocochlear pathologies; monitor treatment out-
comes with amplification; evaluate effects of audi-
tory retraining; and test and evaluate optimal signal 
processing strategies for hearing prosthetic devices. 
There is no substitute for sufficient hands-on experi-
ence to develop sound skills to record, analyze, and 
interpret the auditory brainstem responses from 
real people. This essential requirement not only 
reinforces the understanding of concepts relevant 
to the effects of various stimulus and recording fac-
tors on the ABR response components presented 
in the classroom but also facilitates learning and 
reinforcing practical skills necessary to accurately 
record and interpret the responses for optimal clini-

cal application (Chapter 10). Finally, the accompa-
nying online PowerPoint lectures on the PluralPlus 
companion website should be useful for both stu-
dents and instructors in preparation of the course.

Although my initial intent was to gear the 
content of this book to a single course limited to 
the clinical and research applications of the tran-
sient auditory brainstem response (ABR), the more 
expanded content presented is unlikely to be cov-
ered in a single-semester course. Thus, this book 
can be used in a two-course sequence, wherein the 
first course covers the basic clinical applications 
(hearing screening, threshold estimation, and the 
use of ABR in differential diagnosis) and the sec-
ond course covers the use of ABR in intraopera-
tive monitoring, sustained brainstem responses to 
complex sounds and their clinical applications, and 
the use of sustained brainstem responses to com-
plex sounds in research to understand the neural 
representation of complex sounds in normal and 
impaired ears.

I would like to thank the multiple reviewers 
(who provided helpful feedback that has made the 
final product better), colleagues in the profession, 
and graduate students who have helped shape this 
book. I am deeply indebted to my wife Lata Krish-
nan (sadly, I was not able to convince her to be a co-
author) for painstakingly editing the manuscript. It 
was a pleasure working with the editorial staff at 
Plural Publishing (Christina Gunning, in particu-
lar, who was patient and helpful), and I appreciate 
their cooperation during times when my progress 
was hampered. While I have received quite a bit of 
help from my colleagues, all omissions and errors 
that persist are my own.

This book is a product developed during the 
isolation forced by the COVID-19 pandemic. While 
the isolation (which trapped me in India) forced 
me to work on it, encouraged on by my under-
graduate classmates (AIISH batch of 1970), I do 
feel sad about the terrible devastation visited upon 
(unfortunately continuing to date and postponing 
a planned trip to India next week) humankind by 
this pandemic. I fervently hope that we come out of 
this soon and revert to some semblance of a normal 
life. Godspeed everyone.

Ravi Krishnan
West Lafayette
April, 2021
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1
Overview of the Neuroanatomy of 
Auditory Periphery and Brainstem

SCOPE

The overview in this chapter is primarily intended 
to provide a sufficient, if not exhaustive, founda-
tion of the nature of the neuroanatomic organiza-
tion of the structures and pathways in the auditory 
periphery and the brainstem. This knowledge is 
important because neural elements and tracts in 
these structures contribute to the generation of the 
cochlear, auditory nerve, and brainstem evoked 
responses we use clinically to determine the func-
tional integrity of the peripheral and brainstem 
auditory system. Without this knowledge, our 
ability to record and interpret these responses will 
be less than optimal. Since structure and function 
are closely related, knowledge of the structural 
organization will help the clinician to understand 
the functional consequences of a structural abnor-
mality, enabling the development of better clini-
cal management strategies — essentially becom-
ing a better clinician. Consistent with convention, 
the cochlear and auditory nerve neuroanatomy is 
treated as peripheral, and the brainstem includes 
a description starting with cochlear nucleus and 
including superior olivary complex, nuclei of lat-
eral lemniscus, and inferior colliculus.

I. AUDITORY PERIPHERY: 
COCHLEAR AND AUDITORY 

NERVE NEUROANATOMY

Cochlea: Structure and 
Functional Implications

The mammalian cochlea in the inner can be charac-
terized as a spiral duct with an inner membranous 
part (membranous labyrinth) and an outer bony 
part (osseous labyrinth) that is partitioned into 
three fluid-filled spaces, namely, the perilymph 
(high sodium ion [Na+] concentration and low 
potassium ion [K+] concentration) filled scala ves-
tibuli and scala tympani, and the endolymph (high 
K+ and low Na+) filled scala media (Figure 1–1). 
Epithelial cells with tight junctions surrounding 
the membranous portion help maintain this ionic 
difference (Smith, 1978). The self-contained mem-
branous scala media houses the organ of Corti that 
in turn sits on the basilar membrane. The basilar 
membrane partitions the cochlear duct into scala 
vestibuli and scala tympani and also forms the floor 
of the organ of Corti. The Reissner’s membrane 
separates the scala media from the scala vestibuli. 
The hair cells and their supporting cells rest on the 
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basilar membrane, and have an overhanging gelati-
nous suprastructure called the tectorial membrane 
(see Figure 1–1). It can be seen in Figure 1–1 that 
only the stereocilia of the outer hair cells (OHCs) 
contact the undersurface of the tectorial membrane.

The basilar membrane, attached medially to 
the osseous spiral lamina and laterally to the spi-
ral ligament, extends from the base to the apex of 
the cochlea (about 35 mm) where the perilymphatic 
spaces communicate via the helicotrema. The 
change in the stiffness gradient (resulting from the 
relatively denser network of radial and longitudi-
nal fibers underneath the basilar membrane in the 
base, and relatively sparse network of these fibers 
in the apex [Figure 1–2, bottom right]) and the 

membrane width, going from narrow at the base 
(100 µM) to wide (500 µM) at the apex (see Figure 
1–2), contribute significantly to the frequency for 
place transformation. That is, the traveling wave 
generated by the back-and-forth motion of the sta-
pes in the oval window upon sound stimulation 
progresses in an apical direction, with its envelope 
gradually reaching a maximum at a place deter-
mined by the frequency of the stimulus and quickly 
decreasing in amplitude thereafter (Figure 1–3). 
The location of the peak of the displacement shifts 
to the left (toward the base of the cochlea) with 
increasing frequency. It should be noted here that 
von Bekesy’s (1960) experiments were on cadavers 
using high stimulus levels; therefore, the displace-

Type 1 fibers

IRFs ISFs

OSFs

TRFs
Dieter’s cell

Hensen Cell

Figure 1–1. Cross-section of cochlea showing the three fluid-filled partitions (scala vestibuli, scala 
tympani (perilymph), and scala media (endolymph)) and the organ of Corti with outer hair cells 
(OHCs) and inner hair cells (IHCs), stereocilia, basilar membrane, tectorial membrane, and stria 
vascularis (the cochlear battery).  Also shown are both the afferent fibers of the OHCs (outer spiral 
fibers [OSFs]) and IHCs (inner radial fibers [IRFs]) and the efferent fibers of the IHCs (inner spiral 
fibers [ISFs] and the OHCs (tunnel radial fibers [TRFs]). Type 1 myelinated fibers from the IHCs are 
shown coursing toward the cells in the spiral ganglion.
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ment patterns shown here reflect only the passive 
physical response minus the cochlear active pro-
cesses (also referred to as the cochlear amplifier 
associated with the outer hair cell subsystem) that 

further improve sensitivity and frequency selectiv-
ity substantially. The effects of the active process 
are illustrated by the larger and sharper peak of 
the basilar membrane displacement for the 400-
Hz traveling wave (arrow A in Figure 1–3). The 
electromotility (length changes in the OHCs with 
stimulation) is thought to supply the mechanical 
feedback process that amplifies low-level sound 
(Brownell, Bader, Bertrand, & de Ribaupierre, 1985; 
Dallos, 1992). The cochlear amplification derived 
from the electromotility of OHCs increases the 
sensitivity to soft sounds by 40 to 60 dB (Dallos, 
1992, 2008). The electromotility, thought to produce 
the cochlear amplification of OHCs, is presumably 
driven by prestin, a motor protein expressed in 
the mammalian OHCs. Cochlear amplification is 
essential for normal hearing in adult animals. The 
property of frequency for place transformation 
becomes particularly relevant when we later dis-
cuss considerations of specific stimulus properties to 
obtain cochlear place-specific responses to estimate 
audiogram-like hearing thresholds using the audi-
tory brainstem response (ABR).

The organ of Corti sits on the basilar mem-
brane and consists of two structurally and func-
tionally distinct receptor cells (OHCs and inner 
hair cells [IHCs]), lateral support cells (Hensen’s 
cells), and vertical alignment cells (Deiters’ cells, 

Base

Apex

Basilar Membrane
Width and Stiffness gradient 

Base Apex
Narrow
Stiff

Wide
flaccid

(100 m) (500 m)Narrow (100 m)
Stiff

Wide (500 m)
Flaccid

Basilar membrane

Basilar Membrane

Figure 1–2. The changes in the width and stiffness of the basilar membrane from base to apex. 
The basilar membrane is wider at the apex and more flaccid, whereas it is narrower at the base and 
exhibits greater stiffness (see lower right).

R
el

at
iv

e
A

m
pl

itu
de

0 10 20 30
Distance from Stapes (mm)

A

400 2008001600
Frequency (Hz)

Figure 1–3. A family of Bekesy traveling wave envelopes 
showing frequency for place transformation. Traveling wave 
maxima progressively shift from apex to base (that is, to 
the left) as frequency is increased. Note the amplification 
in the maximum amplitude for 400 Hz (arrow pointed by A) 
reflecting cochlear amplification using the active process. 
The frequency corresponding to each traveling wave is 
identified at the top. Traveling waves approximately reflect 
data from G.  von Bekesy, 1960, Experiments in Hearing. New 
York, NY: McGraw-Hill, Figure 11.49.
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phalangeal processes of the Dieters’ cells and the 
reticular lamina) (see Figure 1–1), and the afferent 
and efferent fibers with distinct innervation pat-
terns for each receptor type. The highly vascular 
stria vascularis on the outer wall of the scala media 
serves to power the metabolic processes involved 
in the +80-mV endolymphatic potential needed 
to mediate the transduction mechanisms of the 
hair cell and is also involved in recovering the K+ 
expelled during transduction (Wangemann, 2002).

The test tube–shaped OHCs (9,000–12,000 in 
number and arranged in three to five rows along 
the length of the cochlea) are located on the lat-
eral portion of the outer pillar of Corti, slanted 
toward the outer pillar (see Figure 1–2). The six to 
seven rows of stereocilia on the apex of each OHC 
are arranged in a V or W pattern (Figure 1–4, bot-
tom), with the tallest ones on the most lateral row 
(toward the outer wall). The length of the OHC ste-
reocilia also increases along the longitudinal axis 
of the cochlear partition (from about 2 µm in the 
base to about 8 µm in the apex). In addition, the 
height of the OHC increases from about 10 µm in 
the base to about 80 µm in the apex. Both physi-
cal changes in the OHCs are thought to contribute 

to the cochlear frequency for place transformation  
—  the taller hair cells with their longer stereocilia 
in the apical regions are more selective to low fre-
quencies. The stereocilia are cross-linked, both 
within each row and between rows (Pickles, Comis, 
& Osborne, 1984), which aids in the opening and 
closing of potassium channels at the tip of the ste-
reocilia to facilitate excitation and inhibition of the 
hair cells, respectively.

The flask-shaped, relatively bigger single row 
of IHCs (about 3,000–4,000 in number) are located 
on the medial side of the inner pillar of Corti (see 
Figure 1–2), again slanted toward the inner pillar of 
Corti. Unlike the OHCs, the height and the length 
of the IHCs and their stereocilia remain unchanged 
along the longitudinal axis of the cochlear partition. 
The two to four rows of stereocilia on the top of 
each IHC form a crescent shape (Figure 1–4, top). 
Like the OHCs, the stereocilia of the IHCs have 
similar cross-links.

Afferent Innervation of the Cochlea

The cell bodies of the afferent neurons form the 
spiral ganglion located in the central core of the 
cochlear spiral called the modiolus. The peripheral 
portion of the afferent bipolar neurons enters the 
cochlea through the habenula perforata and syn-
apses at the base of each hair cell. The peripheral 
portions innervating the OHCs, called the outer 
spiral fibers (OSFs), enter the cochlea through the 
habenula perforata in the osseous spiral lamina and 
cross along the floor of the tunnel of Corti toward 
the OHCs. As they spiral around the cochlea in an 
apical-to-basal direction, each OSF synapses with 
10 to 15 OHCs (starting with the OHCs in the inner 
row, then the middle row, and finally the outermost 
row — see Figure 1–5). Thus, the output of many 
OHCs converges on one OSF, suggesting integra-
tion of information from many OHCs spread across 
the cochlear partition. These unmyelinated OSFs 
are also referred to as Type II fibers (smaller diam-
eter and slower conducting) and form only about 
5% to 10% (Spoendlin, 1978) of the 30,000 auditory 
nerve fibers in humans. While the peripheral fibers 
innervating the IHCs follow a similar path from the 
spiral ganglion, the innervation pattern is very dif-
ferent (see Figure 1–5). The peripheral portion of 

IHC Stereocilia Pattern

OHC Stereocilia Pattern

Figure 1–4. Stereocilia pattern for the inner hair cells 
(IHCs) and outer hair cells (OHCs) in a surface view of 
the normal organ of Corti. The crescent pattern for the 
single row of IHC stereocilia (top) and the V or W pattern 
for the three rows of OHC stereocilia (bottom) are clearly 
evident. Top in each is the modiolar side, and the bottom 
is the outer wall side.
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the fibers innervating the IHCs is called the inner 
radial fiber (IRF). Unlike the OSF, these myelinated 
fibers, called Type I fibers (larger diameter and 
faster conducting), enter the cochlea through the 
habenula perforata (as many as 20 fibers through 
each radial canal, travel radially and synapse the 
nearest IHC at its base). Unlike each OSF, each IRF 
innervates only one IHC. However, as many as 30 
IRFs innervate one IHC, thus providing a diverg-
ing output from one IHC. These IRFs form 90% to 
95% of the total number of afferents in the auditory 
nerve.

Formation of the Auditory Nerve

The central axons of the spiral ganglion cells twist 
to form the auditory nerve bundle, and along with 
the central axons of the vestibular branch form the 
VIII cranial nerve (Figure 1–6, left panel). The VIII 
cranial nerve exits the temporal bone via the inter-
nal auditory meatus and enters the brainstem at the 
lateral aspect of the pontomedullary junction and 
bifurcates into an anterior and a posterior branch. 
The anterior branch courses anteriorly and termi-
nates in the neurons forming the anterior ventral 
cochlear nucleus (AVCN). The posterior branch 
sends off collaterals to innervate neurons in the 
posterior ventral cochlear nucleus (PVCN) as it pro-
ceeds posterodorsally to terminate in the neurons 

of the dorsal cochlear nucleus (DCN) (Figure 1–6, 
right panel). The individual fibers forming the audi-
tory nerve are organized systematically such that 
apical (low-frequency cochlear regions) fibers are 
toward the core, and basal (high-frequency cochlear 
regions) are increasingly on the surface of the audi-
tory nerve bundle. This orderly arrangement rep-
resenting cochlear place (and therefore frequency) 
provides the framework for the development of 
tonotopic organization at the terminal points of the 
auditory nerve in the cochlear nucleus (see Fig-
ure 1–6, right panel — see the frequency arrange-
ment, L [low], M [mid], and H [high], in the AVCN).

II. NEUROANATOMY OF THE 
AUDITORY BRAINSTEM

Salient Features of Organization of 
Brainstem Structures and Pathways

For the purpose of discussion here, the audi-
tory brainstem extends from the medullary-level 
cochlear nucleus to the midbrain-level inferior col-
liculus, including the caudal pontine–level supe-
rior olivary complex (SOC) and nuclei of the lat-
eral lemniscus, and the midbrain inferior colliculus 
(Figure 1–7, left panel). The neuroanatomic organi-
zation of each nucleus along the auditory brainstem  
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Figure 1–5. Afferent innervation pattern of the outer hair cells (OHCs) and inner hair cells 
(IHCs). Panel A illustrates the afferent innervation pattern of the cochlear OHCs and IHCs. Panel 
B shows the nature of the afferent synapses on the IHCs and OHCs.
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shares certain characteristics that include bilateral 
structures, contralateral dominant afferent path-
ways (Figure 1–7, right panel), core (with exqui-

site representation of the cochlear frequency map-
tonotopic organization) and belt (nontonotopic, 
multisensory, efferent recipients) subdivisions, 
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Figure 1–7. Schematic lateral view of the brainstem and midbrain showing 
auditory nuclei along the brainstem and their anatomic levels. Nuclei identified 
are cochlear nucleus (CN) and superior olivary complex (SOC) at the medullary 
and pontine levels; ventral nucleus of lateral lemniscus (VNLL) and dorsal nucleus 
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efferent pathways, and the presence of binaural 
neurons past the cochlear nucleus. The following 
description of the neuroanatomic organization 
of each brainstem structure includes information 
about location, subdivisions, cell types, inputs, 
outputs, and orientation of the tonotopic map. The 
intent here is to provide an introduction to the neu-
roanatomic organization of nuclei and tracts along 
the auditory pathway(s) in the brainstem.

Cochlear Nucleus (CN)

Location: The cochlear nucleus (CN) is located on 
the dorsolateral aspect of the pontomedullary junc-
tion proximal to the root entry zone of the auditory 
nerve (see Figure 1–7, left panel).

Subdivisions: It is a rather complex nucleus 
with a broad diversity in cell types that forces con-
sideration of division into multiple subdivisions 
(Adams, 1986; Brawer, Morest, & Kane, 1974; Cant, 
1992; Moore & Osen, 1979; Osen, 1969). However, 
the scope here is to consider just the two main sub-
divisions — ventral cochlear nucleus (VCN) and 
DCN. The VCN is further subdivided (see Fig-
ure 1–6, right panel) into an AVCN and a PVCN.

Cell types: The anterior portion of AVCN 
contains large spherical bushy cells (the principal 

cell type here with short bushy dendrites) and 
medium-sized stellate or multipolar cells. The pos-
terior portion of the AVCN contains small spherical 
bushy cells, globular bushy cells, and large stellate 
cells. These large stellate cells are also found in the 
anterior PVCN. The posterior PVCN is character-
ized by the presence of octopus cells. The cell types 
in the laminar DCN include stellate, fusiform, gran-
ule, and giant cells. These morphologically distinct 
cell types (Figure 1–8) also show different response 
properties, suggesting differences in their func-
tional roles  (Young et al., 1988).

Inputs: All Type I and II fibers of the auditory 
nerve form the afferent inputs to the subdivisions 
of the CN (Raphael & Altschuler, 2003; Robertson, 
1984; Ryugo, 1992). As described earlier, the AN 
bifurcates upon entering the CN into an anterior 
and a posterior branch. The anterior branch courses 
anteriorly and terminates in the AVCN. The poste-
rior branch courses posteriorly and dorsally send-
ing collateral terminals to the PVCN and continu-
ing on to terminate in the DCN (see Figures 1–6, 
right panel, and Figure 1–8). While the trajectory 
of AN inputs to the CN from all portions of the 
cochlea are similar, the location of bifurcation in the 
CN systematically moves from ventral for fibers 
innervating the apical cochlear regions to dorsal  
for fibers innervating the basal cochlear regions 
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Figure 1–8. Auditory nerve bifurcation into an anterior and posterior 
branch in the cochlear nucleus (CN) and prominent cell types in anterior 
ventral cochlear nucleus (AVCN), posterior ventral cochlear nucleus 
(PVCN), and dorsal cochlear nucleus (DCN). Note the large calyx of 
Held–type synapses engulfing the soma of the spherical and globular 
bushy cells.


