Preclinical Speech Science Workbook

Preclinical Speech Science Workbook

THIRD EDITION

Jeannette D. Hoit Gary Weismer

5521 Ruffin Road San Diego, CA 92123

e-mail: info@pluralpublishing.com website: http://www.pluralpublishing.com

Copyright © 2020 by Plural Publishing, Inc.

Typeset in 12/14 Palatino by Flanagan's Publishing Services, Inc. Printed in South Korea through Four Colour Print Group

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data:

ISBN-13: 978-1-63550-063-9 ISBN-10: 1-63550-063-X

Contents

PREF	FACE	vii
Que	estions	1
1	Introduction	1
2	Breathing and Speech Production	5
3	Laryngeal Function and Speech Production	37
4	Velopharyngeal-Nasal Function and Speech Production	67
5	Pharyngeal-Oral Function and Speech Production	95
6	Speech Physiology Measurement and Analysis	119
7	Acoustics	145
8	Acoustic Theory of Vowel Production	163
9	Theory of Consonant Acoustics	177
10	Speech Acoustic Measurement and Analysis	185
11	Acoustic Phonetics Data	199
12	Speech Perception	217
13	Anatomy and Physiology of the Auditory System	225
14	Auditory Psychophysics	239
15	Neural Structures and Mechanisms for Speech, Language, and Hearing	251
16	Swallowing	265

Answers			
1	Introduction	278	
2	Breathing and Speech Production	279	
3	Laryngeal Function and Speech Production	291	
4	Velopharyngeal-Nasal Function and Speech Production	301	
5	Pharyngeal-Oral Function and Speech Production	311	
6	Speech Physiology Measurement and Analysis	322	
7	Acoustics	330	
8	Acoustic Theory of Vowel Production	343	
9	Theory of Consonant Acoustics	354	
10	Speech Acoustic Measurement and Analysis	363	
11	Acoustic Phonetics Data	376	
12	Speech Perception	391	
13	Anatomy and Physiology of the Auditory System	400	
14	Auditory Psychophysics	411	
15	Neural Structures and Mechanisms for Speech, Language, and Hearing	418	
16	Swallowing	429	
REFERENCES			

Preface

The *Preclinical Speech Science Workbook, Third Edition* is a natural companion to the *Preclinical Speech Science, Third Edition* textbook. It has been carefully designed to help students reinforce, integrate, apply, and go beyond the material presented in the textbook.

The workbook contains a wide variety of activities. These include anatomic labeling, measuring physiologic and acoustic data, interpreting graphs, calculating quantitative problems, answering thought questions about material presented in the textbook, and conducting simple experiments (without the use of special equipment). The solutions to all these activities are provided at the back of the workbook; however, we strongly encourage students to work through each activity independently and refer to the solutions only when completely satisfied with their answers. This will provide the best learning experience and will help students make the transition from passive learners to active participants in their development toward becoming speech-language pathologists, audiologists, and clinical scientists.

3–3. Label the parts of the cricoid cartilage indicated in the figures.

4-6. Label the bones indicated in the figure.

(a) The two nasal cavities are separated from one another by the nasal

_____, which is made up of [Check one]

- _____ tendons and ligaments.
- _____ a matrix of soft tissue.

_____ muscle.

- _____ cartilage and bone.
- (b) The hard palate is made up of the _____ bone and the _____ bone.

6–21. The velopharyngeal orifice area can be estimated by a method developed by Warren and DuBois (1964; see Figure 6–15 in your textbook). Estimate the velopharyngeal orifice area using the formula and the values given below for oral pressure (P_1 , in dynes/cm²), nasal pressure (P_2 , in dynes/cm²), and nasal flow (in cubic centimeters per second, cc/s). The formula is:

Note that dynes/cm² is a unit of measure for pressure that is much smaller than cmH₂O (specifically, $1 \text{ cmH}_2\text{O} \approx 980 \text{ dynes/cm}^2$, so $1 \text{ dyne/cm}^2 \approx 0.001 \text{ cmH}_2\text{O}$). Also, note that *k* is a constant that adjusts for the fact that airflow is often turbulent during speech production, rather than laminar (smooth). The suggested value for *k* is 0.65, density of air \approx .001 (g/cm³), and the air pressure differential = P₁ – P₂.

Velopharyngeal orifice area is expressed in square centimeters (cm²). Calculate the velopharyngeal orifice area from the oral pressure, nasal pressure, and nasal flow values given below.

Oral Pressure (P ₁ ; dynes/cm ²)	Nasal pressure (P ₂ ; dynes/cm ²)	Nasal Flow (cc/s)	Velopharyngeal Orifice Area (cm²)
100	80	200	
100	0	0	
100	20	30	

Indicate which of the calculated values above best describes the velopharyngeal orifice area for:

Sustained vowel with normal voice quality	
Sustained vowel with hypernasal voice quality	
Sustained /m/	

13–30. When is the electrical potential of the hair cells of the organ of Corti and of the crista ampullaris changed?

13–31. The parts of the vestibular system that sense position of the head in the front-toback and side-to-side dimensions are the ______ and _____, respectively. These two structures are part of the organ called the ______.

13-32. The core of the cochlea is called the ______, which contains ______ originating at the base of the hair cells as well as the group of cell bodies called the ______.

13–33. The membranes that separate the three cochlear ducts are ______ and _____.

13-34. In three sentences or less, describe the organ of Corti.