Cognitive and Communication Interventions

Neuroscience Applications for Speech-Language Pathologists

Martha S. Burns, PhD
Contents

Preface xi
Introduction and Text Organization xiii
Reviewers xv
Acknowledgments xvii

1 The Human Brain—Neuroscience Overview and Update 1
 A. Introductory Neurodevelopmental and Acquired Neurocognitive Case Studies 1
 B. How We Got Here—The Historical Perspective 1
 a. Introduction 1
 b. Early Studies of Brain and Language 4
 c. Brain Science Localization Merges With Connectionism 8
 d. The Technology Era Broadens the Scientific Landscape 11
 e. Network Theory Advances Through Enhanced Imaging Techniques 12
 f. Summary 17
 C. Network Neuroscience—An Introduction 17
 a. Size, Scope, and Clinical Relevance 18
 b. Network Organization 18
 c. Summary and Proposed Clinical Applications 21

2 Oral, Gestural, and Written Language Networks 23
 A. Overview of Neuroanatomical Structure: The Triune Brain 23
 a. Lower Triune Brain Levels: Automatic Biological Functions and the “Emotional Brain” 23
 b. The Highest Triune Brain Level: The Neocortex 25
 c. Clinical Applications of the Triune Brain Model 26
 B. Network Neuroscience of Language and Communication 28
 a. Top-Down and Bottom-up Language Network Components 28
 b. Ventral and Dorsal Stream 31
 c. Phonology 34
 d. Syntax 39
 e. Semantics 44
f. Prosody 45
g. Gestural Communication 46
h. Pragmatics 46
i. Written Language 49
j. Summary 50

3 Cognitive Neuroscience and Connectomics Applications to Neurological Disorders 51
A. Network Neuroscience of Cognitive Functions 51
 a. Overview of Cognitive Functions 51
 b. Network Neuroscience of Memory 53
 c. Network Neuroscience of Executive Functions 55
B. Human Connectomics: Tying Architecture and Biological Mechanisms to Brain Disorders 58
 a. Connectomics—Detailed Wiring Diagrams of Brain and Biological Mechanisms 58
 b. Connectomic Features Relevant to Neurological Disorders: Hubs, Edges, Directionality, Weight, and Network Segregation/Integration 60
 c. Chemistry: Brain Modulation 61
C. Summary 66

4 How the Human Brain Changes: Neurogenetics, Neuroplasticity in Maturation, Recovery, and Environment 67
A. Introduction 67
B. Neurogenetics 68
 a. Introduction 68
 b. DNA and RNA Basics 68
 c. Genetic Variation and Human Brain Differences 68
 d. Epigenetics 71
 e. Genetic Variations and Disorders of Speech, Language, and Cognition 73
 f. Summary 78
C. Neuromaturation and Neuroplasticity 79
 a. Fetal Brain Development 79
 b. Neonatal Brain Development—Birth to 5 Years—Brain Volume Measures 81
 c. Neonatal Brain Development—Birth to 5 Years—White Matter Measures 83
 d. The Adolescent Brain—A Second Sensitive Period 85
 e. Variability in Development 89
 f. Personalized Medicine Adaptations 91
D. Neuroplasticity 92
E. Interactional Synchrony: Brain-to-Brain Functions 94

5 Environmental Factors in Brain Maturation of Language and Cognitive Functions 97
A. Introduction 97
B. Socioeconomic Status 98
 a. Introduction 98
 b. Socioeconomic Status Effects on Brain Maturation: Structure and Function 99
 c. Socioeconomic Status Effects Associated With Malnutrition 103
 d. Interaction of Socioeconomic Status and Genetics 103
 e. Socioeconomic Status Effects on Language, Working Memory, and Processing Speed 104
 f. Socioeconomic Status Differences in Parent Language and Other Parent-Child Interactions 106
 g. Other Executive Functions: Attention and Self-Regulation 108
 h. Individual Differences 110
 i. Socioeconomic Status Reading 111
 j. Socioeconomic Status and Academic Outcomes 113
C. Stress 113
 a. Introduction 113
 b. From Positive to Adverse Effects of Stress 114
 c. Educational Implications 115
 d. Effects on Cognitive Development 116
D. Adverse Childhood Experiences and Toxic Substance Exposure 117
 a. Adverse Childhood Experiences 117
 b. Toxic Substance Exposures 118
 c. Summary 121
E. Summary and Clinical/Educational Applications 121

6 Connectomics and Genetics of Neurodevelopmental Cognitive and Communication Disorders 123
A. Introduction 123
B. Autism Spectrum Disorders 125
 a. Introduction 125
 b. Genetics 126
 c. Underlying Brain Mechanisms 130
 d. Environmental Factors 135
C. Developmental Language Disorders 137
 a. Introduction 137
 b. Phonological Deficit Hypothesis 139
c. Cognitive Systems: Learning and Memory 140
d. Statistical Learning 144

D. Developmental Dyslexia 146
 a. Introduction 146
 b. Genetics 147
 c. Underlying Brain Mechanisms 148
 d. Perceptual and Cognitive Factors 149
 e. Environmental Factors 150

E. Childhood Apraxia of Speech (Developmental Dyspraxia Affecting Speech) 151

7 Connectomics and Genetics of Acquired Cognitive and Communication Disorders 153
 A. Introduction 153
 B. Concussion and Traumatic Brain Injury—Mechanisms and Clinical Features 155
 a. Introduction 155
 b. Brain Mechanisms and Related Symptomatology 155
 C. Aphasia—Status of Neuroscience Research 161
 a. Introduction 161
 b. Brain Mechanisms and Related Symptomatology 162
 D. Right Hemisphere Disorder—Status of Neuroscience Research 168
 a. Introduction 168
 b. Brain Mechanisms and Related Symptomatology 169
 E. Progressive Neurological Diseases (Alzheimer’s Disease, Lewy Body Dementia, Other Dementias) 174
 a. Introduction 174
 b. Lewy Body Dementias 174
 c. Alzheimer’s Dementia, Mild Cognitive Impairment, and Primary Age-Related Tauopathy 176
 d. Other Dementias 178
 e. Summary 178

8 How Therapy Changes Brains 181
 A. Introduction and Overview of Effects of Intervention 181
 B. The “What” of Therapy—How to Select Effective Task-Specific Activities 184
 a. Introduction 184
 b. Evidence-Based Practice in Neurodevelopmental Disorders—State of the Science 185
c. Evidence-Based Practice in Acquired Neurological Disorders—State of the Science 191

C. The “How” of Therapy 196
 a. Introduction 196
 b. How Therapy Upregulates Excitatory Neuromodulators Associated With Neuroplasticity: Dopamine, Norepinephrine, and Acetylcholine 197
 c. Regulatory Neuromodulator of Serotonin 198
 d. Balancing Top-Down Executive/Regulatory Intervention With Task-Specific Activities 199
 e. Summary 200

D. The “When” of Therapy 200
 b. Issues Related to Recovery Periods Following Brain Injury 203
 c. Intensity of Therapy—Recent Research 204
 d. Summary 205

9 Other Considerations: Maximizing Therapeutic Outcomes 207
 A. Individualizing Therapy to the Unique Needs of Each Client or Patient 207
 B. Maximizing Therapeutic Commitment: Promoting a Safe, Trusting Therapeutic Alliance 208
 C. Teacher, Parent, Family, and Interprofessional Collaboration 209
 a. Teacher Collaboration 209
 b. Parent Collaboration 209
 c. Family Collaboration With Acquired Neurocognitive Disorders 213
 d. Interprofessional Collaboration 214
 e. Summary 214
 D. Behavioral Academic and Vocational Adaptations: Building Goal-Directed Behavior in Adolescents and Adults 214
 E. Technological Adjunctive Approaches That Are Evidence Based to Increase Therapeutic Dosage 217
 F. Summary 220

Appendix I. A Brief Overview of Traditional English Syntax Terminology 221
Appendix II. ICD-11 Language Disorders 225
COGNITIVE AND COMMUNICATION INTERVENTIONS

Appendix III. Dementia Codes from the International Classification of Diseases, 11th Revision	231
Appendix IV. Recent Clinical Resources for Task Selection With Strong Evidence Base	237
Appendix V. Evidence-Based Technological Cognitive and Communication Interventions	239
References	243
Index	299
Preface

One of the most significant scientific developments in the past several decades for clinical therapeutic professionals working with neurodevelopmental and neurogenic disorders has been the emergence, in the late 1950s and early 1960s, of neuroscience as a distinct discipline (Cowan, Harter, & Kandel, 2000). Eric Kandel, who was awarded the 2000 Nobel Prize for Physiology or Medicine, noted that, “the emergence of neuroscience is but one of several examples . . . in which inspired rearrangements of scientific disciplines provided opportunities for novel interactions—interactions which substantially changed the perspective, the technical power, and the excitement of a field” (Kandel, 1982). The intent of this text is to explain and expand the broadened neuroscience perspective within the speech-language community.

Most in the profession of speech and language pathology have studied neuroanatomy or neurology, and some have specialized in neurogenic disorders in children and/or adults, but the field is very broad. Just a cursory overview of our specialty groups provides a glimpse of our professional diversity: fluency, swallowing, voice, alternative and augmentative communication, language, cultural and linguistic diversity, auditory processing disorders, sensorineural hearing loss, and orofacial disorders. Yet, one overriding facet of each of these areas is a wealth of contributions from the neuroscience through research community. From a neuroscience perspective, research focused on the “bilingual brain,” auditory processing system, brain organization of gestural versus oral language, neurogenic basis of fluency disorders, swallowing disorders, cochlear implant algorithms, and neurological comorbidity in orofacial disorders, we discover exciting new insights into our specialty fields. Speech, language, and hearing are, after all, core neurological capacities. Kandel’s (1982) observation, that the power of neuroscience research is that it is a shared component of all of our specialties, thereby provides all of us a powerful opportunity for intra- and interdisciplinary interaction and broadened perspectives.

Take, for example, the newest neuroscience research on therapeutic effects on brain recovery after stroke. Even those who specialize in pediatric language learning, for example, and do not work with stroke, per se, can still benefit from the neuroscience research on mechanisms shown to drive neuroplastic recovery processes (i.e., how therapy changes the brain). Those specializing in speech and language disorders in pediatrics can also apply the new neurolinguistics research studies of aphasia or social and perceptual problems associated with right hemisphere lesions. Conversely, neuroscience research in pediatric disorders like apraxia of speech and autism spectrum disorders has led to increased understanding of the neurogenetic components of a range of cognitive and communication disorders like dyslexia in children as well as adult-onset speech and cognitive
disorders associated with Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease, to name just a few. Through neuroscience, each of us, within our diverse specialties, can share a more unified perspective and revel in the power and the excitement associated with the new neuroscience research as it applies to speech-language pathology intervention.
The human brain is an experience-dependent organ. As such, it is continually changing from early stages in neonatal development until the day we die. That is why and how our therapy effectively alters brain function. Unless an individual has a neurological illness or injury, most of the experience-dependent changes are constructive, permitting each individual to adapt to the specific contingencies of their own external environment and internal needs. Therapy of any kind is designed to maximize this natural experience-dependent capacity for constructive change. Especially when typical neurological maturation and/or function is altered by genetics, illness, or injury, the aim of therapy is to enable the brain to reorganize for more effective and efficient processing of information. Chapter 1 begins with a review of the newest research on brain organization, specifically focusing on anatomical regions that support language, reading, and cognition and that specifically correlate to speech and language therapy. This is followed by the new research from the Human Connectome Project and other neurodevelopmental research on brain maturation and intercommunication among these cortical and subcortical cerebral structures from gestation through adulthood. A focus of Chapter 1 is the early “setup” period of brain maturation from birth to 5 years of age, but continuing maturation changes, now known to occur through adulthood, is also reviewed. The organization/maturation section of Chapter 1 also reviews the current research on brain chemistry, as chemical changes in the brain connections and environment are major drivers of the brain’s adaptive architecture (i.e., neuroplastic brain changes associated with experience). The remaining sections of Chapter 1 provide more detail on neuroplasticity, specifically, what we know about how the therapy drives neuroplastic change, the effects of genetics on brain maturation, as well as the response to illness and injury. The adolescent brain has been a focus of much international research over the past several years, with newer research looking at individual differences in adolescent brain maturation and effects of poverty on that age group. Chapter 1 concludes with a summary of this new research, highlighting the special challenges associated with adolescent brain changes. Chapter 2 reviews the current neuroscience research on organization of oral, written and gestural language networks in the human brain based on results from structural and functional neuroimaging studies.

Chapter 3 provides an introduction to connectomics, which has enabled more precise understanding of brain organization and variability in typical children and adults as well as those with neurocognitive disorders. Chapter 4 reviews major human dynamics that drive the development of the brain from fetus to adult: genetics, experience and recovery functions after brain injury.

Chapters 5 through 9 focus on recent neuroscience investigations of factors that can affect typical cognitive and communication development in the brain as well as...
those that can disrupt connectomics. The initial and primary human brain adaptation processes are survival based. Above all, the human must be able to procure food, find adequate shelter to maintain body temperature, and protect the body from external threats. It is important to remember this as we work with children and adults who have cognitive or communication disorders, since environmental stresses like poverty or fear of injury or impact of illness will take precedence, brain-wise, over non-survival-based cognition. Chapter 5 reviews the research on the effects of environmental stressors like poverty and family adversity on brain maturation and function. When a person is hungry, anxious, or in pain, the human brain is directing and enabling the individual to focus on those survival problems, thereby effectively “shorting out” higher level cognitive functions. We all are familiar with how a traumatic event, like an auto accident, or even something less immediately impactful, like a major argument with a loved one, can impair our reasoning and ability to accomplish even routine tasks. For some of our clients and patients, stressors like poverty, abuse in the home, fear of inability to return to work after a stroke, to name just a few, will dramatically interfere with the individual’s ability to benefit from a therapeutic session. Since cognition and communication take a back seat to survival needs, therapists need to understand, consider, and accommodate for primary stressors in each therapeutic session. Chapter 5 provides a discussion about the therapist’s role in identifying and accommodating for the effects of trauma and stress in the treatment session.

Chapter 6 reviews recent clinical descriptions and neuroscientific investigations of neurodevelopmental disorders including autism spectrum disorders, developmental language disorders, and childhood apraxia of speech. Chapter 7 reviews acquired neurocognitive disorders including aphasia, right hemisphere disorders, and dementias. Chapters 8 and 9 provide an overview of neuroscience considerations for interventions including research on the what, how, and when of therapy reviewed in Chapter 8 and other factors important for individualizing and maximizing outcomes in Chapter 9.

Many of the chapters also provide case studies to provide examples of practical application of the neuroscience research. Finally, new neuroscience research (see, especially, Siler & Benjamin, 2019) supports the time-validated process of testing during study to improve memory and inference. To this purpose, study questions are provided periodically for review and group discussion.

Reference