Contents

Preface xiii
Acknowledgements xiv
Contributors xv

1 **Speech-Language Pathology, Mild Cognitive Impairment, and Dementia**
 Introduction 1
 Communication Defined 1
 Rationale for Therapy 3
 Neuroplasticity 3
 Memory Systems and Their Selective Vulnerability to Disease 4
 Cognitive Reserve 5
 Summary of Important Points 7
 References 7

2 **Cognition, Memory, and Communication** 11
 Cognition and Memory 11
 The “Company of Cognition” 11
 Memory Defined 12
 Sensory Memory 12
 Working Memory 13
 Long-Term Memory 14
 Relation of Cognition and Memory to Communication 20
 Production of Linguistic Information 20
 Comprehension of Linguistic Information 21
 Summary of Important Points 21
 References 22

3 **MCI: Mild Cognitive Impairment** 25
 Introduction 25
 Clinical Presentations of MCI 26
 Prevalence of MCI 26
 Diagnostic Criteria for MCI 27
 Conversion to Dementia 27
 Conversion Rate by MCI Subtype 28
 Number of Deficits and Conversion to Dementia 28
 Risk and Protective Factors 29
 Cognitive Deficits 29
 Cognitive–Linguistic Deficits in MCI 29
 Type of Language Changes 30
4 Alzheimer’s Dementia 39
Alzheimer’s Disease Introduction 39
Diagnostic Criteria for AD 39
Neuropathology of AD 40
Risk Factors for AD 42
 Age 44
 Family History of AD 44
 Less Education 45
 History of Head Trauma 45
 Loneliness 45
 Gender 45
 Maternal Age 45
 Apolipoprotein E4 Allele 45
 Mild Cognitive Impairment 46
Predictors of Disease Progression 46
Protective Factors 46
Effects of AD on Cognitive and Communicative Functions 46
 Early Stage 47
 Middle Stage 49
 Late Stage 52
Summary of Important Points 53
References 54

5 Dementia and Down Syndrome 61
Introduction 61
Risk of Developing Alzheimer’s Disease 61
Common Features in People with DS 62
Prevalence of Dementia in DS 62
Diagnosing Dementia in Individuals with DS 63
 A Study of the Cognitive-Communication Profiles of DS 63
 Adults with and without Dementia 63
Language and Communication Skills in Adults with DS 64
 Premorbid Language 64
 Language Change in Dementia 65
 Cognitive and Behavioral Measures Appropriate for Individuals with DS 65
Summary of Important Points 67
References 67

6 Vascular Dementia 73
Introduction 73
Neuropathology 74
Diagnostic Criteria
Criteria for Presence of Cognitive Disorder 75
Criteria for Presence of VaD 75
Criteria for Probable VaD 76
Criteria for Possible VaD 76
Criteria for Vascular Mild Cognitive Impairment 76
Criteria for Probable VaMCI 77
Criteria for Possible VaMCI 77
Unstable Vascular VaMCI 77
Risk Factors for VaD 77
Aging 77
Hypertension 77
Family History 77
Ethnicity and Gender 77
Diabetes Mellitus 77
Lifestyle 77
Effects of VaD on Cognitive and Communicative Functioning 79
Vascular Pathology May Be a Trigger for Dementia 79
Observations About the Effects of Vascular Pathology on Cognition and Communication 79
Comparison of Effects of Cortical and Subcortical Pathologies 80
Cortical Pathologies 80
Subcortical Pathologies 80
VaD compared with AD 81
Observations from Course-of-Disease Studies 81
Conclusion 82
Summary of Important Points 82
References 83

7 Parkinson’s Disease and Dementia 89
Parkinsonism and Parkinson’s Disease 89
Incidence and Prevalence of PD and Dementia Among Persons with PD 89
Risk Factors for PD 90
Risk Factors for Development of Dementia 90
Neuropathology of PD 91
Symptoms of PD 92
Movement Symptoms 92
Other Associated Symptoms 92
Diagnostic Criteria 92
MDS Task Force Criteria for Diagnosing PDD 92
Neuropsychological Characteristics of PD and PDD 93
PD Without Dementia 93
PD with MCI and Dementia 94
Relation of PDD, Dementia with Lewy Bodies, and AD 95
Comparison of the Dementia of PD and AD 96
8 **Dementia and Lewy Body Disease** 107
 - Lewy Body Disease 107
 - Diagnostic Criteria and Symptomatology 108
 - Consortium Consensus Criteria for Diagnosis of Dementia 109
 - Caregiver Report of Early Symptoms 111
 - Incidence and Prevalence 111
 - Risk Factors for DLB 112
 - Effects of LBD on Cognition 112
 - Executive Function Deficits 112
 - Visuoperceptual and Spatial Functions 112
 - Memory and Attention 113
 - Cognitive Profile of LBD Compared with AD 113
 - Effects of LBD on Language and Communicative Function 114
 - A Case of Pure LBD 115
 - Summary of Changes in Communicative Functioning 116
 - Summary of Important Points 116
 - References 117

9 **Dementia and Huntington’s Disease** 123
 - Overview and Genetics of Huntington’s Disease 123
 - Neuropathology of HD 124
 - Symptomatology 124
 - Affect and Motor Symptoms 124
 - Effects of HD on Speech 125
 - Disease Effects on Cognition 125
 - Language Symptoms 126
 - Striatal Degeneration and Language 127
 - Cognition and Communication 129
 - Summary of Important Points 129
 - References 103

10 **Frontotemporal Dementia** 135
 - Introduction 135
 - Consensus Terminology and Diagnostic Criteria 135
 - Behavioral Presentation 137
 - Behavioral Variant Frontotemporal Dementia 137
 - Language Presentation: Primary Progressive Aphasias 140
 - Variants of PPA 140
Frontotemporal Dementia and Amyotrophic Lateral Sclerosis 145
 Effects of ALS-FTD on Language 145
Summary of Important Points 146
References 147

11 Assessment of Cognitive-Communication Disorders of Dementia 153
 Introduction 153
 The Process of Assessment 153
 Prior to Testing 154
 Review the Patient’s Chart 154
 Arrange for a Good Testing Environment 154
 During Testing 154
 Check Vision 154
 Check Hearing 154
 Check Literacy 155
 Take Steps to Reduce Test-Taking Anxiety 155
 Be Alert to Depression 155
 Be Alert to Drug Affects on Performance 156
 Use Appropriate Tests 156
 Assessment of MCI due to AD 158
 Screening for MCI 158
 Comprehensive Neuropsychological Approach to Screening for MCI 160
 Montreal Cognitive Assessment 161
 Repeatable Battery for the Assessment of Neuropsychological Status 161
 Assessment of AD 162
 Screening for AD 162
 Comprehensive Evaluation of Cognitive-Communication Functioning 163
 Differential Diagnosis 168
 Differentiating Mild AD from Delirium and Depression 168
 Differentiating Mild AD from Frontotemporal Dementia 170
 Presenting with Progressive Changes in Behavior 170
 Differentiating Mild AD from FTD Presenting with Progressive
 Changes in Language (Primary Progressive Aphasia and Its Variants) 173
 Differentiating AD from Vascular Dementia 175
 Differentiating Mild AD from Dementia with Lewy Body (DLB) and
 Parkinson’s Disease with Dementia 177
 Summary of Important Points 179
References 180

12 Cognitive Intervention and MCI 189
 Kimberly C. McCullough
 Introduction 189
 Forms of Cognitive Intervention 189
 Developing a Cognitive Intervention Program for MCI 192
 What Outcome Measures Should Be Used to Document Progress? 192
 What Is the Typical Session Format for CIPs? 193
Key Element 1: Repetition-Based Focus on Cognitive Domains
Key Element 2: Provide Direct Training of Strategies and Functional Skills
Key Element 3: Empower Clients with Education Regarding Healthy Aging and Brain Habits
Key Element 4: Provide Goal-Oriented Social Opportunities that Support Cognitive Engagement
Conclusion
Summary of Important Points
References

13 Treatment: Direct Interventions
Introduction
Treatment Guidelines
Strategies for Successful Intervention
Facilitating Perception of Stimuli
Consider Span Capacity of Working Memory
Control of Task Complexity
Minimize Error Responses
Recognition Is Easier Than Recall
Use Retrieval Cues That Reflect Support Given at Encoding
Allow More Time to Respond
Avoid Having Client Multitask
Using the Principles of Neuroplasticity to Support Learning and the Maintenance of Knowledge and Skills
Attention
Reward and Emotion Are Related
Stimulation
Priming
Active Engagement
Self-Generation of a Response
Reminiscence
Elaborate Encoding
Repetition
Intensity, Duration, and Constraint
Summary of Important Points
References

14 Indirect Interventions for Cognitive-Communication Disorders of AD
Introduction
Linguistic Modifications
Improving Language Comprehension
Improving Production of Language
If the Patient Wishes to Write a Letter, Supply the Materials, a List of News Items, and a Picture of the Letter’s Intended Recipient
Computer Supports
- Computer-Based Assistive Technology 234
- “Life Story Work” 236
- A House as a Cognitive Orthotic 236

Caregiver Counseling Basics
- Creating a Safe Environment 236
- Music 237
- Having Something to Nurture 237

Supporting Feeding
- Reducing Verbal Perseveration and Disruptions 238

Summary of Important Points
- References 239

15 Care Planning

Introduction
- The Law and Medicare Regulations 243
- Minimum Data Set 243
- Resident Assessment Protocols 244
- Centers for Medicare and Medicaid Services 245

Role of the SLP
- A Relevant Question 245
- Can SLPs Do Cognitive Therapy? 246

Medicare Cap on Amount of Service Dollars
- Using Test Performance to Develop Treatment Plans 246
- Restorative Care Plan: A Case Example 247
- Functional Maintenance Plan: A Case Example 250

Documentation Is Critical
- Evaluation and Plan of Care 252
- Progress Notes 252
- Treatment Encounter Notes 252
- Documentation Pitfalls 253

Caregiving
- Health Risks of Caregiving 253
- Gender and Caregiving 254
- Family Strife and Violence 255
- Factors That Influence Caregiver Burden and Stress 255

Family Counseling
- Culture Matters in Counseling 256
- Emphasize What the Patient Can Do 257

Caregiver Education and Training
- Summary of Important Points 259

References

Index
- 265
Preface

The second edition of *Cognitive-Communication Disorders of Dementia* contains updated information on the cognitive-communication disorders associated with the most common dementia-producing diseases as well as new chapters on minimal cognitive impairment (MCI) and cognitive stimulation as a means of building cognitive reserve in individuals at risk for dementia. Students in training and practicing clinicians will find up-to-date information about how to diagnose, differentiate, and provide interventions to individuals with MCI and dementia-associated cognitive-communication disorders.

Four general topics are covered:

1. Cognition and communication
2. Dementing diseases, their characteristics, and effects on cognition and communication
3. Assessment of cognitive-communicative communication function
4. Treatment of cognitive-communication disorders

The book begins with an overview of the role of the speech-language pathologist with individuals at risk for and diagnosed with dementia. Chapter 2 provides a foundation for understanding the memory systems that can be selectively impaired by neurodegenerative diseases and their relation to communicative function. Chapter 3 is devoted to minimal cognitive impairment (MCI), a fast-growing population that speech-language pathologists are increasingly asked to serve. Chapters 4 through 10 focus on the common dementia-producing diseases. The longest chapter, Chapter 11, is on assessment and differentiation of the cognitive-communication disorders associated with the dementing diseases. Chapters 12 through 15 focus on therapy, the direct and indirect interventions that clinicians can use to maximize the function of individuals with dementia.

At the end of each chapter is a summary of important points. This summary will provide instructors, students, and practicing professionals a good overview of the chapter’s content.
Our greatest debt is owed to the many people with dementia and their family members who shared their experiences and generously gave their time to participate in research. They are our heroes. We are also indebted to the teachers, colleagues, and students who shaped our views and supported our endeavors. Since publication of the first edition of *Cognitive-Communication Disorders of Dementia*, voluminous research has been published on dementia-associated diseases, their diagnosis, and treatment. For her cheerful help in locating and organizing the publications relevant to the mission of this book and her care in performing myriad assignments, we thank Lesley Skinner.

A new chapter in this edition covers cognitive interventions for individuals with minimal cognitive impairment (MCI). Increasingly clinicians are treating and counseling individuals with MCI and they need information about providing effective cognitive stimulation programs. We thank Kimberly C. McCullough for sharing her expertise on this timely topic.
Introduction

Individuals with mild cognitive impairment (MCI) and dementia are the profession’s fastest growing clinical population, nationally and globally. In fact, every 4 s someone is diagnosed with Alzheimer disease (AD), the leading cause of dementia (Alzheimer’s Association, 2012; Ferri, Prince, Brayne, Brodaty, & Fratiglioni, 2005). Currently, 24 million individuals worldwide are affected; however, by the year 2020, 42 million people will have AD or a form of dementia and 100 million will be affected by 2050 (Alzheimer’s Association, 2012).

Dementia-associated diseases, such as AD, can begin decades before they are clinically obvious and, once diagnosed, endure for many more years. Because the dementia syndrome eventually makes it impossible for affected individuals to care for themselves, they increasingly depend on others for survival. Most patients are cared for at home by family, typically with serious financial, social, and emotional consequences to all involved. Those patients and families who have the support of professionals have a higher quality of life (Gaugler, Roth, Haley, & Mittelman, 2008; Mittelman, Roth, Coon, & Haley, 2004). Speech-language pathologists (SLPs) are among the professionals who can provide support to affected individuals and their families. As experts in language and communication science and the evaluation and treatment of communication disorders, SLPs are uniquely qualified to diagnose and treat the cognitive-communication disorders associated with the disease.

The goal of this book is to provide practicing professionals and graduate students the knowledge needed to evaluate and treat individuals who have MCI or dementia and counsel professional and personal caregivers. Toward that end, the first order of business is answering the question, “Why do individuals with dementia have a communication disorder?” However, to answer that question, we need to first define communication.

Communication Defined

Communication is the sharing of information by means of a symbol system. When words are used, we call it linguistic communication and
nonlinguistic when other symbol systems are used such as mathematical notation. To communicate, either linguistically or nonlinguistically, an individual must have an idea to share and a symbol system through which to express the idea. For example, symphony conductors communicate their ideas about tempo and loudness to orchestra members by moving a baton in prescribed ways. Baseball coaches communicate plays by hand signals to players. These are examples of nonlinguistic communication, and although nonlinguistic communication can be impaired as a consequence of a dementing disease, the focus of the SLP is on impairment in linguistic communication. Nonetheless, both nonlinguistic and linguistic communications are impaired in AD because both are cognitive processes for sharing information.

Another distinction critical to characterizing the effects of dementia on communicative function is the difference between “speech” and “language.” For our purposes, the term “speech” refers to the motor production of sounds, and the term “language” refers to the symbol system by which sound is paired with meaning for a particular purpose. As previously noted, “linguistic communication” is the cognitive process of intentionally sharing ideas through language and in dementia the ability to communicate is affected more than speech and language.

“Meaningful” communication requires the production and comprehension of ideas. The act of speaking, in and of itself, does not constitute communication because that which is spoken may be structurally and semantically meaningless. Similarly, knowing the grammar of a language does not ensure the ability to communicate. Communication only occurs when words have been structured in such a way that the listener comprehends the speaker’s idea.

Now the question of why communication is affected in dementia can be answered. Communication is affected because the pathophysio-logic processes that disrupt multiple cognitive functions and produce dementia disrupt information generation and processing. Patients are said to have a “cognitive-communication” problem because progressive deterioration of cognition interferes with communication. The fact is, the production and comprehension of language cannot be separated from cognition. Consider just the simple act of naming an object, for example, a turnip. First you must perceive the features of the turnip. They must be matched to those in long-term memory for recognition to occur. Thereafter, you must form an intention to say the object’s name. The linguistic representations of objects are part of long-term lexical memory and must be retrieved and brought to consciousness. Perhaps you are uncertain about how a turnip looks and therefore are unsure whether you are perceiving a turnip, parsnip, or rutabaga. If so, you have to decide whether to indicate your uncertainty. To articulate uncertainty about the object’s name or identity, a motor plan must be formed. Thus, the simple act of object naming requires perception, access to long-term memory, association, recognition, lexical retrieval, decision making, motor planning, and self-monitoring.

Persons with dementia have difficulty producing linguistic information because they have trouble thinking as well as generating and ordering ideas, in part because information-processing capabilities of declarative and working memory systems are compromised as is the case in AD (Hornberger, Bell, Graham, & Rogers, 2009; Rogers & Friedman, 2008), in part because of progressive degradation of knowledge (Laisney, Giffard, Belliard, de la Sayette, Desgranges, & Eustache, 2011; Laisney, Giffard, & Eustache, 2004) as is the case in semantic dementia. They have difficulty comprehending language because of deficits in the
cognitive processes of perception, recognition, attention, memory, and degradation of knowledge (MacDonald, Almor, Henderson, Kempler, & Andersen, 2001).

Rationale for Therapy

In the not too distant past, clinicians thought little could be done to improve the functioning of individuals diagnosed with dementia. Early identification of those affected was not the priority it is today; however, as the number of dementia patients skyrocketed, interest in early detection and intervention also skyrocketed. Worldwide, researchers in neuroscience, as well as behavioral and cognitive sciences, have focused on dementia-associated diseases and their management. Collectively, their findings make a compelling case for early detection that can be summarized as follows:

1. The human brain is plastic and many of the factors that advantage neuroplasticity are known.
2. Humans have multiple systems for learning and information representation that are not equally vulnerable to the pathology of the common dementia-producing diseases.
3. Individuals with greater cognitive reserve exhibit dementia later than those with less.
4. Cognitive stimulation can improve function and produce learning (greater cognitive reserve) in individuals with MCI and dementia.

Said another way, SLPs now have evidence-based techniques that advantage neuroplasticity for strengthening cognitive reserve in individuals with MCI to delay conversion to dementia and evidence-based techniques for maximizing the functioning of those with clinically apparent dementia.

Neuroplasticity

Neuroplasticity is the lifelong ability of the brain to reorganize as a result of experience (Kleim & Jones, 2008; Nudo & Bury, 2011). Learning is the byproduct of neuroplasticity. Intuitively we know this to be true because we add to and refine our knowledge throughout life. Said another way, neuroplasticity is experience-dependent and behavioral training is key to promoting brain reorganization after brain damage (Raskin, 2011).

Of significance to clinicians is the fact that the type of experience matters. Learning can be negative or positive. An example of negative learning is the learned nonuse of a paretic limb. An example of positive learning is improvement in a language skill through language therapy.

To trigger neuroplasticity sufficient stimulation is needed and the type of stimulation influences the way in which the brain reorganizes. For example, the presentation of an intensive program to incrementally challenge the auditory processing system can create structural changes in the network of cells that support auditory processing. Visual stimuli influence cell networks that support visual processing. A clinician who knows a client’s profile of processing deficits and strengths can design a personalized stimulation program to influence brain response in a positive way. In the case of individuals with a neurodegenerative disease, such as Parkinson’s disease or AD, the goal is to strengthen residual knowledge and skills, and if possible, build additional cognitive reserve.

Table 1–1 contains a list of empirically demonstrated factors known to be influential in recovery of function (Kleim & Jones, 2008; Kolb & Gibb, 2008). Not listed are diet, hormones, and drugs that also affect the capacity for recovery but are not factors that SLPs manipulate.
Memory Systems and Their Selective Vulnerability to Disease

In Chapter 2 the various memory systems with their putative neuroanatomic substrates are described. Of significance to clinicians is how the neuropathology of the different dementia-associated diseases affects them. For example, the various memory systems are not equally vulnerable to the effects of AD, especially early in the disease course. The neural structures that support working and declarative memory, particularly episodic memory, are affected early whereas

<table>
<thead>
<tr>
<th>Principle</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>Learning requires attention and attention is a function of stimulus relevance to the individual.</td>
</tr>
<tr>
<td>Reward</td>
<td>Increases attention and increased attention produces better learning.</td>
</tr>
<tr>
<td>Stimulation</td>
<td>Sensory and/or motor experience of sufficient intensity and duration are necessary for brain reorganization.</td>
</tr>
<tr>
<td>Use or lose</td>
<td>Lack of use of knowledge or skills can cause their degradation.</td>
</tr>
<tr>
<td>Use and improve</td>
<td>Use of knowledge or skills produces improvement.</td>
</tr>
<tr>
<td>Specificity</td>
<td>The nature of the stimulation/experience dictates the nature of brain reorganization. Example: Language stimulation produces changes in the neuronal networks that support language.</td>
</tr>
<tr>
<td>Simultaneity</td>
<td>Concepts, words, and actions that occur together become linked in the nervous system.</td>
</tr>
<tr>
<td>Repetition</td>
<td>Repetition of stimulation/experience is necessary for the creation and maintenance of long-term potentiation and learning.</td>
</tr>
<tr>
<td>Intensity</td>
<td>Intense experience is needed for significant brain change.</td>
</tr>
<tr>
<td>Duration</td>
<td>The stimulation/experience must be of sufficient duration to create lasting change.</td>
</tr>
<tr>
<td>Constrain/forced use</td>
<td>Stimulates the brain to reorganize, relearn, or compensate.</td>
</tr>
<tr>
<td>Interference</td>
<td>Brain reorganization in response to one experience can interfere with learning of another behavior.</td>
</tr>
<tr>
<td>Transference</td>
<td>Brain reorganization in response to one experience can enhance the learning of a similar behavior.</td>
</tr>
<tr>
<td>Sleep</td>
<td>Necessary for representation of new information and skills in the nervous system through synaptic and memory system alterations.</td>
</tr>
<tr>
<td>Age</td>
<td>Plasticity is greater in childhood.</td>
</tr>
</tbody>
</table>
those supporting conditioning, motor procedural, and habit memory are relatively spared (De Vreese, Neri, Fioravanti, Belloi, & Zanetti, 2001; Salmon, Heindel, & Butters, 1992). In Parkinson’s disease the neural structures supporting nondeclarative and working memory are more vulnerable early, whereas those supporting declarative memory are relatively spared.

Clinicians can use early spared systems to help individuals compensate for disease effects and inform caregivers about how to reduce demands on impaired systems.

The discovery of the differential vulnerability of the brain’s representation systems to AD motivated investigations of the potential of procedural learning treatments and conditioning for improving function and quality of life for AD patients. A considerable literature now exists documenting improved skill learning in AD patients through programs that capitalized on spared procedural memory systems and conditioning (Deweer et al., 1994; Deweer, Pillon, Michon, & Dubois, 1993; Dick, Hsieh, Bricker, & Dick-Muehlke, 2003; Dick et al., 1996; Grober, Ausubel, Sliwinski, & Gordon, 1992; Keane, Gabrieli, Fennema, Groudon, & Corkin, 1991; Verfaellie, Keane, & Johnson, 2000).

For individuals with MCI who have not evolved to dementia, strengthening their knowledge and skills (cognitive reserve) is the primary goal. Their ability to learn new factual information will be greatly influenced by the degree of their episodic memory impairment. Early on, when episodic memory is minimally affected, new fact learning is easier. As the disease progresses, more emphasis can be placed on using the spared nondeclarative memory/learning systems than on the more impaired declarative systems. Regardless of stage, however, consistent use of retained skills and knowledge helps maintain them.

Cognitive Reserve

The term “cognitive reserve” refers to the mind’s ability to cope with brain damage. One cannot assume that people with similar amounts of brain damage, by virtue of disease or injury, have similar cognitive abilities. This fact is apparent in individuals with AD. Research has shown that some individuals with extensive brain pathology display few, if any, cognitive deficits in life (Katzman et al., 1988). In fact, approximately 25% of individuals with AD pathology whose brains undergo postmortem examination were symptom free in life (Ince, 2001). Why the discrepancy?

Scientists theorize that some individuals may have had more neurons to begin with; others suggest that some internal or external mechanism prevents the extensive neuronal loss typical of the disease. Yet others suggest that a richer network of interneuronal connections, as a result of education and life experiences, have had a neuroprotective effect. All of these theories are true.

Katzman and colleagues (1988) found an association between brain size and degree of AD symptomatology. Patients who had few symptoms and extensive pathology had higher brain weights and more neurons. More recently, Perneczky et al. (2012) reported that clinical and epidemiologic studies suggest that AD patients who have larger head sizes have better cognitive performance than those with smaller head circumferences, even though the degree of neuropathology is the same.

One “external mechanism” known to influence susceptibility to the effects of AD is amount of education. Individuals with greater education have a reduced risk of developing AD (Anttila et al., 2002; Evans et al., 1993; Evans et al., 1997; Letenneur, Commenges, Dartigues, & Barberger-Gateau, 1994; Stern et al., 1994; White et al., 1994;