Contents

Foreword by Fred H. Bess, PhD ix
Acknowledgments xi
Contributors xiii

1 Typical Auditory Development 1

1 Hearing Development: Embryology of the Ear 3
Mark Hill

2 Biologic Development of the Auditory System From Periphery to Cortex 23
Robert V. Harrison

3 Infant Speech Perception 49
Derek M. Houston

4 Auditory Development in Children With Normal Hearing 67
Lynne A. Werner and Lori J. Leibold

II Etiology and Medical Considerations 87

5 Descriptive Epidemiology of Childhood Hearing Impairment 89
Adrian Davis and Katrina A.S. Davis

6 Genetics of Childhood Hearing Loss 133
Linda J. Hood and Bronya J.B. Keats

7 Medical Considerations for Infants and Young Children With Hearing Loss: 149
A Pediatrician’s Perspective
Betty R. Vohr

8 Medical Considerations for Infants and Children With Hearing Loss: 163
An Otologist’s Perspective
Craig A. Buchman and Oliver F. Adunka

9 Current Issues in Preventable Hearing Loss 181
Andrea Hillock-Dunn and Christopher Spankovich
III Types of Hearing Loss in Children

10 Conductive Hearing Loss in Children: Otitis Media With Effusion and Congenital Conditions
 Lisa L. Hunter and Daniel I. Choo

11 Auditory Neuropathy Spectrum Disorder
 Gary Rance and Arnold Starr

12 Management of Children With Auditory Neuropathy Spectrum Disorder (ANSD)
 Patricia A. Roush

13 (Central) Auditory Processing Disorders in Children
 Prudence Allen

14 Pseudohypacusis: False and Exaggerated Hearing Loss
 James E. Peck

IV Early Identification of Hearing Loss

15 Principles and Methods of Newborn Hearing Screening
 Martyn Hyde

16 Newborn Hearing Screening Program Evaluation and Quality
 Martyn Hyde

17 Screening for Hearing Loss and Middle Ear Disorders: Beyond the Newborn Period
 Jackson Roush and Nicole E. Corbin

18 Newborn Hearing Screening Program Implementation: Early Hearing Detection and Intervention
 Kathryn L. Beauchaine, Jeffrey K. Hoffman, and Diane L. Sabo

V Audiologic Assessment of Children

19 Middle Ear Measurement
 Lisa L. Hunter and Chelsea M. Blankenship

20 Otoacoustic Emissions in Infants and Children: An Updated Approach
 Carolina Abdala, Margaret Winter, and Christopher A. Shera

21 Threshold Assessment in Infants Using the Frequency-Specific Auditory Brainstem Response and Auditory Steady-State Response
 Susan A. Small and David R. Stapells
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Electrophysiological Assessment of Hearing With Auditory Middle Latency and Auditory Late Responses</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td>James W. Hall III and Anuradha R. Bantwal</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Behavioral Audiometry in Infants and Children</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>Allan O. Diefendorf and Anne Marie Tharpe</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Audiologic Considerations for Children With Complex Developmental Conditions</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>Allan O. Diefendorf, Kathleen R. Corbin, Rebecca Trepos-Klingler, and Amanda S. Weinzierl</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Hearing Technologies</td>
<td>629</td>
</tr>
<tr>
<td>25</td>
<td>Current Approaches to the Fitting of Amplification to Infants and Young Children</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>Marlene P. Bagatto and Susan D. Scollie</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Hearing Instrument Orientation for Children and Their Families</td>
<td>659</td>
</tr>
<tr>
<td></td>
<td>Anne Marie Tharpe, Hollea A.M. Ryan, and Samantha J. Gustafson</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Remote Microphone Systems and Communication Access for Children</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Jace Wolfe, Dawna Lewis, and Leisha R. Eiten</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Measuring Outcomes of Infants and Children With Hearing Loss</td>
<td>713</td>
</tr>
<tr>
<td></td>
<td>Teresa Y.C. Ching, Sanna Y.L. Hou, and Vicky W. Zhang</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cochlear Implants for Children: Promoting Auditory Development With Electrical Pulses</td>
<td>739</td>
</tr>
<tr>
<td></td>
<td>Karen A. Gordon</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Care of Children Who Use Cochlear Implants</td>
<td>761</td>
</tr>
<tr>
<td></td>
<td>Marilyn Neault</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Other Hearing Devices: Bone Conduction</td>
<td>781</td>
</tr>
<tr>
<td></td>
<td>Bill Hodgetts</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>The Future of Auditory Implants</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>René H. Gifford</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Management of Childhood Hearing Loss</td>
<td>813</td>
</tr>
<tr>
<td>33</td>
<td>History of the Management of Hearing Loss in Children</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td>Andrée Durieux-Smith and Elizabeth M. Fitzpatrick</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Facilitating Communication in Infants and Toddlers With Hearing Loss</td>
<td>829</td>
</tr>
<tr>
<td></td>
<td>Melody Harrison</td>
<td></td>
</tr>
</tbody>
</table>
35 Potential Meets Reality in Early Intervention for Children With Hearing Loss
Amy McConkey Robbins

849

36 Support for Adolescents With Hearing Loss
Kris English

871

37 Minimal Hearing Loss in Children
Heather Porter, Fred H. Bess, and Anne Marie Tharpe

887

38 Moderate to Profound Sensory/Neural Hearing Loss in Children
Karen C. Johnson, Amy S. Martinez, Laurie S. Eisenberg, and Dianne M. Hammes Ganguly

915

39 School-Age Children
Carolyne Edwards

941

40 Providing Services in Educational Contexts: Defining the Role of the Educational Audiologist
Patricia M. Chute and Mary Ellen Nevins

961

Index

973
It is difficult to pinpoint when the term pediatric audiology actually came into common usage. We can only assume that the concept of pediatric audiology began shortly after the development of the discipline of audiology during and following World War II. We do know that Canfield, an otolaryngologist from Yale University, made one of the earliest references to pediatric audiology in his seminal book *Audiology, The Science of Hearing* (1949). However, long before the 1940s, historical writings clearly show that early civilization experienced and appreciated the problems associated with deafness in childhood. Indeed, Greek and Latin writers referenced the plight of the deaf on several occasions in the Bible.

During the Renaissance through to the latter part of the 19th century, we read about teachers and priests who were dedicated to serving children with hearing loss. This was a period in deaf education sometimes referred to as “the age of teaching”; it was an era in which the oral method clashed with teachings that emphasized the use of signs and finger spelling. Such well-recognized teachers as Pedro Ponce de León and Juan Pablo Bonet of Spain, Samuel Heinicke of Germany, Abbe Charles Michel de l’Epee of France, and Thomas Braidwood of Scotland were early pioneers of methods and techniques for educating young deaf children. One well-known scholar who brought specific teaching methods and philosophies from Europe to America was Thomas Gallaudet. After studying with de L’Epee in Paris, Gallaudet returned to the United States and established the first school for deaf children in Hartford, Connecticut, in 1817. The school was called the American Asylum for the Education and Instruction of the Deaf and Dumb.

During the early 20th century, pediatric audiology was not yet a recognized specialty, but educational and health care professionals throughout the United States became involved by necessity in the identification, assessment, and management of very young children with hearing loss. Perhaps most notable was the work of Sir Alexander and Lady Irene Ewing who worked tirelessly to serve young children with hearing loss in Great Britain. As early as 1919, Irene Ewing opened a hearing clinic at Manchester University. The Ewings, more than anyone during this period, influenced professionals throughout the world on issues pertaining to the identification and management of childhood deafness. They introduced some of the fundamental concepts now associated with pediatric audiology: the benefits of early identification and intervention including hearing aids, the importance of parent-home training for the development of speech and language, and the effective approaches for testing young children with hearing loss. By most accounts, this was the beginning of pediatric audiology.

By the late 1950s and early 1960s, a small group of audiologists was beginning to focus its efforts on young children, and we began to hear the term pediatric audiology on a more frequent basis; soon thereafter, training programs started to offer specialty tracks in pediatric audiology. There were few books dedicated to young children with hearing loss. As there was no single text that met the specific needs of pediatric audiologists or university training programs, several resource books were considered essential reading. These books included *Educational Guidance and the Deaf Child* (Ewing, 1957), and *New Opportunities for Deaf Children* by Sir Alexander Ewing (1959); *Auditory Disorders in Children* by Myklebust (1954); *Deafness in Childhood* by McConnell and Ward (1967); and *Hearing and Deafness* by Davis and Silverman (1960).

Clinical protocols related to identification, assessment, and hearing aid fitting for very young children also was limited. Evidence-based procedures had not yet been developed, and clinicians working with children were forced to rely mostly on intuition and common sense for their clinical decision making—clinical practice was probably more art than science. As Liden and Harford (1985) observed, pediatric audiologists “waved their magic wand and sprinkled whiffle dust to make the child’s invisible reactions visible” (p. 6). Importantly, robust clinical tools commonly used today, such as electroacoustic immittance measures, auditory brainstem responses, and otoacoustic emissions, were not yet available to pediatric audiologists for the identification, assessment, and management of children with hearing loss. Although the profession of audiology recognized the importance of early identification
of hearing loss in children, the average age of identification in the United States was 3 to 4 years, and there was a significant lag between the age when a child was identified and the age when a child actually received a hearing aid. Hearing aids were large, unattractive, and produced a great deal of distortion. Receiver buttons were used to modify the electroacoustic responses of hearing aids, and Y-cords served to provide a child with bilateral amplification. Hearing aid fitting was accomplished using a comparative approach for aided sound-field behavioral thresholds. The hearing aid that provided the most threshold improvement with the least amount of irregularity across frequencies was thought to provide the best speech understanding and subsequently was the hearing aid of choice. Because it was difficult to obtain accurate thresholds on young children using behavioral methodology, the fitting strategy was an ongoing process sometimes taking more than a year to finalize.

The contents of this new edition (second) of Comprehensive Handbook of Pediatric Audiology, serve as a stunning reminder of how far we have come since those early years in our efforts to serve young children with hearing loss and their families. Indeed, one cannot help but be impressed with the many positive changes that have occurred since the first edition of this book. Today, better graduate education, advanced technology, and innovative clinical research have brought about significant improvements in early identification of hearing loss, audiological assessment, the selection and evaluation of amplification, and the management strategies used with young deaf children. We now have the ability to identify hearing loss in the vast majority of newborns, obtain reliable frequency-specific threshold information on infants and toddlers, and objectively fit young babies with digital hearing aids and other assistive devices. The advent of cochlear implantation has resulted in significant improvements in the speech, language, and listening skills of children with severe-to-profound bilateral sensorineural hearing loss. We also have witnessed improvements in technology and medical care that have brought about changes in the prevalence of causation and severity of hearing loss. The second edition of Comprehensive Handbook of Pediatric Audiology addresses all of the relevant issues impacting today’s young children with hearing loss and their families. It is exciting to see in one volume comprehensive coverage of contemporary trends in pediatric audiology. No doubt, the information contained within this new edition will be of value to those who seek to better understand the perplexities of childhood deafness and motivate others to search for newer and better ways to serve young children with deafness.

A portion of the proceeds from this book will be dedicated to a student scholarship fund at Vanderbilt University named in memory of Judith S. Gravel, an outstanding alumna of Vanderbilt University and one of the true giants of pediatric audiology. In fact, it was Judy Gravel who originally envisioned the need for a book in audiology that focused on pediatric hearing loss. Her presence can be seen throughout the entirety of this book, simply by reviewing the references at the end of each chapter that highlight her diversity of interest areas and contributions to the profession. Although Judy was taken from us at a young age, her life was filled with love, fun, and accomplishments that far exceeded her years. To be sure, we are all so very fortunate that she shared her many gifts with us.

—Fred H. Bess, PhD

References

Acknowledgments

The concept and original outline for this book were developed at a meeting with Dr. Judith Gravel in July 2006. Judy was a big dreamer and saw a great need for a comprehensive text in the area of pediatric audiology. With a twinkle in her eye, she referred to this book as “the mothership.” By the end of this meeting, the Table of Contents included chapters covering every conceivable topic related to the basic sciences, screening, assessment, and management associated with childhood hearing and hearing loss. It was her vision and passion that led to the development of this book. Two weeks following the July 2006 meeting with Judy, she was diagnosed with cancer. We lost Judy on December 31, 2008. Throughout her courageous battle with cancer, we asked Judy on numerous occasions if she wanted to continue the work on the book. Our queries were always greeted with silence. When Judy became silent the answer was always clear. To discontinue work on this project was never an option for Judy. We have done all that we could to ensure this book lives up to Judy’s dream. We thank you, Judy.

It is possible that our work on this book had more missed deadlines than the book has pages. Nonetheless, throughout this journey we have always had the support, expertise, and patience of the exceptional group at Plural Publishing. Specifically, we would like to thank Angie Singh for her genuine encouragement and support from the very start. Throughout the process, Valerie Johns, Kalie Koscielak, and Nicole Bowman have always been there to nudge us along gently and to help us with even the smallest editorial detail. We cannot imagine having a more positive and informed group with whom to work.

We offer a special thank you to Samantha Gustafson. Her amazing organizational skills, and overall management of the editing process kept us on track for the last year and a half. We simply could not have done it without her! We are also grateful to Melanie Jordan who took on the tremendous task of verifying thousands of references for us. And, of course, we would like to thank the 68 authors who took time from their research, clinical, and administrative activities to share their knowledge, experiences, and wisdom with the readers of this volume.

Finally, we would like to thank our life partners Jim and Carol for their unqualified support of our work on this project—we promise to make up for lost time!

—Anne Marie Tharpe and Richard Seewald
Contributors

Carolina Abdala, PhD
Professor
Tina and Rick Caruso Department of
Otolaryngology-Head and Neck Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
Chapter 20

Oliver F. Adunka, MD, FACS
Professor and Division Director
Department of Otolaryngology-Head and Neck Surgery
The Ohio State University Wexner Medical Center Director, Pediatric Otology
Nationwide Children’s Hospital
Columbus, Ohio
Chapter 8

Prudence Allen, PhD
Director
National Centre for Audiology
Associate Professor
School of Communication Sciences and Disorders
Faculty of Health Sciences
The University of Western Ontario
London, Ontario, Canada
Chapter 13

Marlene P. Bagatto, AuD, PhD
Adjunct Research Professor
National Centre for Audiology
Western University
London, Ontario, Canada
Chapter 25

Anuradha R. Bantwal, MSc (Audiology and Speech Rehabilitation)
Visiting Faculty

Ali Yavar Jung National Institute for the Hearing Handicapped
Audiologist and Speech-Language Pathologist
AURED—Aural Education for the Hearing Impaired
Mumbai, India
Chapter 22

Kathryn L. Beauchaine, MA, CCC-A
Audiology Coordinator, Hearing and Balance Center
Boys Town National Research Hospital
Omaha, Nebraska
Chapter 18

Fred H. Bess, PhD
Vickie and Thomas Flood Professor
Department of Hearing and Speech Sciences
Vanderbilt Bill Wilkerson Center
Vanderbilt University School of Medicine
Director
National Center for Childhood Deafness and Family Communication
Nashville, Tennessee
Chapter 37

Chelsea M. Blankenship, AuD
PhD Student
University of Cincinnati
Cincinnati, Ohio
Chapter 19

Craig A. Buchman, MD, FACS
Lindburg Professor and Chair
Department of Otolaryngology
Washington University School of Medicine
St. Louis, Missouri
Chapter 8
Contributors

Boys Town National Research Hospital
Omaha, Nebraska
Chapter 27

Kris English, PhD
Professor and Interim School Director
School of Speech Pathology and Audiology
The University of Akron
Akron, Ohio
Chapter 36

Elizabeth M. Fitzpatrick, PhD
Associate Professor
Faculty of Health Sciences
University of Ottawa
Senior Scientist
Children’s Hospital of Eastern Ontario Research Institute
Ottawa, Canada
Chapter 33

Dianne M. Hammes Ganguly, MA, CCC-SLP
Assistant Professor of Clinical Otolaryngology
USC Caruso Family Center for Childhood Communication
Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
Chapter 38

René H. Gifford, PhD
Associate Professor, Hearing and Speech Sciences Director, Cochlear Implant Program
Associate Director, Implantable Hearing Technologies
Vanderbilt Bill Wilkerson Center
Nashville, Tennessee
Chapter 32

Karen A. Gordon, PhD, Reg. CASPLO, CCC-A
Bastable-Potts Health Clinician Scientist in Hearing Impairment
Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children
Chapter 29

Associate Professor, Department of Otolaryngology-Head and Neck Surgery
University of Toronto
Toronto, Canada
Chapter 22

Robert V. Harrison, PhD, DSc
Professor and Director of Research
Department of Otolaryngology-Head and Neck Surgery
University of Toronto
Senior Scientist
Program in Neuroscience and Mental Health
The Hospital for Sick Children
Toronto, Canada
Chapter 2
Mark Hill, PhD
Head of Embryology
School of Medical Sciences, Medicine
UNSW Australia
Sydney, Australia
Chapter 1

Andrea Hillock-Dunn, AuD, PhD, CCC-A
Assistant Professor
Department of Hearing and Speech Sciences
Vanderbilt University
Associate Director
Division of Pediatric Audiology
Vanderbilt Bill Wilkerson Center
Nashville, Tennessee
Chapter 9

Bill Hodgetts, PhD
Associate Professor
University of Alberta
Program Director, Bone Conduction Amplification
Institute for Reconstructive Sciences in Medicine
Misericordia Hospital
Edmonton, Canada
Chapter 31

Jeffrey K. Hoffman, MS, CCC-A
Outreach Coordinator
Early Childhood Hearing Outreach (ECHO) Initiative
NCHAM—National Center for Hearing Assessment and Management
Utah State University
Logan, Utah
Chapter 18

Linda J. Hood, PhD
Professor
Department of Hearing and Speech Sciences
Associate Director for Research
National Center for Childhood Deafness
Vanderbilt Bill Wilkerson Center
Vanderbilt University

Nashville, TN
Honorary Professor
School of Health and Rehabilitation Sciences
University of Queensland
Brisbane, Australia
Chapter 6

Sanna Y.L. Hou
Paediatric Research Audiologist
National Acoustic Laboratories
Sydney, Australia
Chapter 28

Derek M. Houston, PhD
Associate Professor
Department of Otolaryngology-Head and Neck Surgery
The Ohio State University College of Medicine
Columbus, Ohio
Chapter 3

Lisa L. Hunter, PhD
Scientific Director, Audiology
Communication Sciences Research Center
Cincinnati Children’s Hospital Medical Center
Professor
Otolaryngology and Communication Sciences and Disorders
University of Cincinnati
Cincinnati, Ohio
Chapters 10 and 19

Martyn Hyde, BSc, PhD
Professor
Department of Otolaryngology
University of Toronto
Consultant
British Columbia Early Hearing Program
Ontario Infant Hearing Program
Toronto, Canada
Chapters 15 and 16

Karen C. Johnson, PhD
USC Caruso Family Center for Childhood Communication
Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
Chapter 38

Bronya J.B. Keats, PhD
Professor and Head Emeritus
Department of Genetics
Louisiana State University Health Sciences Center
New Orleans, Louisiana
Chapter 6

Lori J. Leibold, PhD
Director, Center for Hearing Research
Boys Town National Research Hospital
Omaha, Nebraska
Chapter 4

Dawna Lewis, PhD
Director
Listening and Learning Laboratory
Boys Town National Research Hospital
Omaha, Nebraska
Chapter 27

Amy S. Martinez, MA
Assistant Professor of Clinical Otolaryngology
USC Caruso Family Center for Childhood Communication
Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
Chapter 38

Marilyn Neault, PhD
Director
Habilitative Audiology Program
Boston Children’s Hospital
Assistant Professor of Otology and Laryngology
Harvard Medical School
Boston, Massachusetts
Chapter 30

Mary Ellen Nevins, EdD
Professor and Director of Auditory-Based Intervention
University of Arkansas for Medical Sciences
Little Rock, Arkansas
Chapter 40

James E. Peck, PhD
Associate Professor Emeritus
Division of Audiology
Department of Otolaryngology and Communicative Sciences
University of Mississippi Medical Center
Jackson, Mississippi
Chapter 14

Heather Porter, PhD, CCC-A
Postdoctoral Fellow
USC Caruso Family Center for Childhood Communication
Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery
Keck School of Medicine
University of Southern California
Los Angeles, California
Chapter 37

Gary Rance, PhD, MSc, BEd, Dip Aud, MAudSA(cc)
 Associate Professor
Department of Audiology and Speech Pathology
The University of Melbourne
Melbourne, Australia
Chapter 11

Amy McConkey Robbins, MS, CCC-SLP, LSLS Cert. AVT
Speech-Language Pathologist
Communication Consulting Services
Indianapolis, Indiana
Chapter 35
Jackson Roush, PhD
Professor and Director
Division of Speech and Hearing Sciences
Department of Allied Health Sciences
University of North Carolina School of Medicine
Chapel Hill, North Carolina
Chapter 17

Patricia A. Roush, AuD
Associate Professor
Department of Otolaryngology-Head and Neck Surgery
University of North Carolina at Chapel Hill
Director of Pediatric Audiology
University of North Carolina Hospitals
Chapel Hill, North Carolina
Chapter 12

Hollea A.M. Ryan, AuD, PhD
Assistant Professor
Samford University
Birmingham, Alabama
Chapter 26

Diane L. Sabo, PhD
Hearing Screening Program Manager
Audiology Systems, Inc.
Schaumburg, Illinois
Chapter 18

Susan D. Scollie, PhD
Associate Professor
School of Communication Sciences and Disorders
Principal Investigator
National Centre for Audiology
Faculty of Health Sciences
University of Western Ontario
London, Ontario, Canada
Chapter 18

Richard Seewald, PhD
Distinguished University Professor Emeritus
School of Communication Sciences and Disorders
National Centre for Audiology
Faculty of Health Sciences
University of Western Ontario
London, Ontario, Canada
Chapter 25

Christopher A. Shera, PhD
Professor
Otology and Laryngology
Harvard Medical School
Boston, Massachusetts
Chapter 20

Susan A. Small, PhD
Hamber Professor of Clinical Audiology
School of Audiology and Speech Sciences
University of British Columbia
Vancouver, British Columbia, Canada
Chapter 21

Christopher Spankovich, AuD, PhD, MPH
Associate Professor
Department of Otolaryngology and Communicative Sciences
University of Mississippi Medical Center
Jackson, Mississippi
Chapter 9

David R. Stapells, PhD
Professor Emeritus
School of Audiology and Speech Sciences
University of British Columbia
Vancouver, British Columbia, Canada
Chapter 21

Arnold Starr, MD
Professor Emeritus
Department of Neurology and Neurobiology
University California at Irvine
Irvine, California
Chapter 11

Anne Marie Tharpe, PhD
Professor and Chair
Department of Hearing and Speech Sciences
Contributors

Associate Director
Vanderbilt Bill Wilkerson Center
Vanderbilt University School of Medicine
Nashville, Tennessee
Chapters 23, 26, and 37

Rebecca Trepcs-Klingler, MA, CCC-A
Audiologist
Riley Hospital for Children at Indiana University Health
Indianapolis, Indiana
Chapter 24

Betty R. Vohr, MD
Professor of Pediatrics
Alpert Medical School of Brown University
Medical Director, Rhode Island Hearing Assessment Program
Director, Neonatal Follow-up
Women and Infants Hospital
Providence, Rhode Island
Chapter 7

Amanda S. Weinzierl, AuD, CCC-A
Audiologist
Riley Hospital for Children at Indiana University Health
Indianapolis, Indiana
Chapter 24

Lynne A. Werner, PhD
Professor
University of Washington
Seattle, Washington
Chapter 4

Margaret Winter, MS, CCC-A
Associate Professor of Clinical Otolaryngology
USC Caruso Family Center for Childhood Communication
University of Southern California
Los Angeles, California
Chapter 20

Jace Wolfe, PhD
Hearts for Hearing
Oklahoma City, Oklahoma
Chapter 27

Vicky W. Zhang, PhD
Paediatric Research Audiologist
National Acoustic Laboratories
Sydney, Australia
Chapter 28
This book is dedicated to our dear friend and colleague Judith S. Gravel, whose vision for this volume guided our every step. Judy was beautifully unique. She was a scholar, a scientist, a teacher, and a master clinician whose career exemplified the highest standards of professionalism and ethical conduct. Above all, she was a warm and caring person with a remarkable way of bringing out the best in everyone whose life she touched, including children whom she loved the most.

Dr. Judith S. Gravel
December 1948–December 2008
Hearing Development: Embryology of the Ear

Mark Hill

Developmental Origins

Human embryology at the turn of the last century identified selected aspects of ear structural development as part of the overall study of the development of the head and nervous system in studies by Thring (1914). Studies of animal models played an important role in the early history of auditory embryology. For example, as early as 1911, Jenkinson examined the embryological development of the middle ear in mice. Studies of embryonic human external ears followed in the 1930s (Wood-Jones & Wen, 1934). The chicken model was also used around this time for studying the development of the central auditory pathway (Levi-Montalcini, 1949). In the 1940s and 1950s, research focused on the relationship between the human auditory system and the general embryonic stages of development (Streeter, 1942, 1948, 1951). It was not until the 1950s that hearing development research took off with many studies on embryological, anatomic, and neurologic development. Today, a search of the PubMed reference abstract database with “development of hearing” will return more than 10,000 studies. The current studies mainly utilize animal models and study the molecular mechanisms of development. In particular, genetic and teratological studies have and are identifying a growing number of specific genes and teratogens associated with auditory abnormal embryology. Our current understanding of developmental mechanisms and gene function has led to potential future treatment of genetic deafness through gene therapy (Askew et al., 2015).

This chapter introduces the embryology time course of the human ear as divided by the three anatomic divisions (Figure 1–1, external, middle, and inner). The description also draws on the many animal model studies that have helped us further understand human auditory development. Examples are given of embryologic studies currently unraveling the complex signaling pathways involved in development. Many of these pathways involve a regulated sequence of secreted growth factors, transcription factor “switches,” gap junctions, and adhesive interactions choreographed into a back-and-forth signaling process between developing ear structures and surrounding tissues. Finally, a brief overview of critical periods of embryologic development in relationship to genetic and environment conditions is given. Note that neurologic and postnatal development is covered elsewhere in this text (see Chapters 2 and 4) and in recent reviews (Fritzsch, Knipper, & Friauf, 2015; Litovsky, 2015). Human embryology stages and the organ of audition and equilibrium are also described in the online resource Embryology (http://tiny.cc/Hearing_Development).

General Human Embryology

When staging human prenatal development, there is an important consideration and sometimes confusion when reading the literature. Embryologists consider fertilization to initiate development and all following staging commences from this point in time. Clinicians, other than with in vitro fertilization (IVF), cannot easily ascertain the time of fertilization. In this case, a far easier and more predictable timing is from when the mother is not pregnant, that is, the last menstrual period (LMP). Therefore, there is often approximately a 2-week difference, as fertilization occurs after ovulation at the midpoint of the menstrual cycle. For example,
postfertilization Week 3 is clinically Week 5 LMP. All timings described in this current chapter refer to embryologic dates from fertilization.

In the first 3 weeks of development, the embryo forms initially as three main layers (trilaminar), or germ layers, from which all tissues of the embryo derive. These three layers are the ectoderm (forms all neural tissue and the surface epithelium); the mesoderm (forms most connective tissues of the body; muscle, bone, cartilage); the endoderm (forms the lining epithelium of the gastrointestinal, urogenital, and respiratory tract). Each of these layers begins as a simple circular disk of cells stacked like dinner plates. The three layers later will segment themselves into different regions, which contribute to specific tissues. Specialized senses such as hearing and vision will have contributions from all three of these embryonic germ layers during their complex developmental process.

In the fourth week of development, organogenesis begins throughout the embryo, which converts the trilaminar embryo into anatomically identifiable organs and tissues. In humans, the first 8 weeks of development are described as the embryonic period when organogenesis occurs. This is followed by the fetal period when continued growth and differentiation of mainly preexisting tissues and organs occurs. Classically, the embryonic period has been divided into 23 Carnegie stages, describing development as a series of observable changes in external appearance and features of the embryo. Stage 1 begins at fertilization, Stage 7 at implantation at the end of the first week, and Stage 23 the end of the embryonic period in the eighth week. The same classification can be applied to embryos of many different species, allowing direct developmental comparisons although over different time periods for each species stage. This classification has also been useful for studying the embryological development of human hearing and balance using a variety of animal models (mainly chicken, mouse, rat, and zebrafish), which will be referred to within this chapter.

Normal embryonic system development, including hearing, requires a combination of developmen-
tional signaling mechanisms. These mechanisms include short- and long-distance interactions by secretions (growth factors, hormones, and ionic changes), adhesive interactions (cell-cell, cell-extracellular matrix), and a subsequent cascade of transcription factors (DNA binding proteins). These transcription factors activate key genes required at specific developmental stages and eventually the adult pattern of gene expression in that cell or tissue.

Clinically, the embryonic period can also be seen to occupy most of the first trimester, and the fetal period occupies the second and third trimester of human development. This division of development is also an important consideration when we look at the critical periods of development that can be impacted by teratogens. This chapter includes brief coverage of some molecular regulatory mechanisms of normal development, as perturbations of these signaling pathways relate to abnormalities of hearing and balance. The following sections cover initially the early embryonic development of all three anatomic ear divisions, which are followed by later fetal development and detailed development of the cochlear and key auditory components.

Early Inner Ear

The earliest external feature of auditory development is the appearance on the ectoderm of the embryo surface in the head region of otic placodes (for a review, see Whitfield, 2015). These placodes form as a pair of the series of placodal regions that form initially at the edge of the neural plate. The otic placodes are two small circular regions of ectoderm on the lateral surface of the developing head and the first “visible” pair of sensory placodes that eventually will contribute to each sensory system (hearing, vision, smell, and taste). In other species, there can be additional sensory placodes that contribute to sensory systems not present in humans. The otic placode lies closely associated with, but separate from, the neural tube level that corresponds to the future cranial nerve eight (CN VIII). The otic vesicle is now lost from the embryo surface and sits embedded within the mesenchyme, embryonic connective tissue, behind the first and second pharyngeal arches. The otic vesicle is surrounded by a number of developmental structures including the fifth rhombomere (medially), the anterior cardinal vein (laterally), and developing cranial ganglia (rostro-caudally). These events of otic placode formation, invagination, and otic vesicle formation all occur within the third week of human development.

Otic Vesicle Development

The inner ear membranous labyrinth has two major linked components, the vestibular system (semicircular canals) and the auditory system (cochlea duct). Both are derived from the otic vesicle. This section will detail the early events of otic vesicle differentiation followed by specific notes on the later development of both systems.

By the fourth week, the otic vesicle is a spherical epithelial fluid-filled ball at the level of rhombomere 5 and 6 (Hatch, Noyes, Wang, Wright, & Mansour, 2007). During this week, neuroblasts delaminate to form the primordial of the vestibulocochlear (statoacoustic) ganglion, the vesicle elongates, and the walls also change in relative thickness. This initial elongated portion of the otic vesicle will form the endolymphatic sac.

The beginning of otic vesicle differentiation is the localized expression of transforming growth factor-β2 (Okano et al., 2005). The site (see Figure 1–2) of this expression in the otic wall locates cells that will delaminate and contribute to formation of the statoacoustic
ganglion or cranial nerve CN VIII (Andermann, Ungos, & Raible, 2002; Represa, Moro, Gato, Pastor, & Barbosa, 1990). These cells remain adjacent to the otic vesicle residing in the surrounding cellular mesenchyme, a mixture of mesoderm and neural crest cells, the latter contributing to the ganglia (Bruska & Wozniak, 2000; Wikstrom & Anniko, 1987). Cells within the ganglia differentiate into both neural and supporting glial cells. The neural cells eventually develop a bipolar morphology, extending central processes toward the neural tube and peripherally into the sensory epithelium of the vestibular apparatus and cochlea. Ganglionic neuron processes extend centrally toward the neural tube region that will form the medial geniculate nuclei. Divisions of the cochlear ganglion (spiral) from the vestibular ganglion have been identified to occur in human embryos between Carnegie stages 18 and 19 (44 to 46 postovulatory days; Ulatowska-Blaszyk & Bruska, 1999). Growth of processes toward the sensory epithelia is potentially driven by chemoattractant and repulsion cues (for a review, see Fekete & Campero, 2007). The neurotrophin family and their high-affinity Trk receptors control innervation of the cochlea during embryonic development. Mouse models point to a role for both brain-derived neurotrophic factor (Bdnf) and neurotrophin 3 (Nt3; Schimmang et al., 2003).

In humans, the cochlea nerve fibers in the prosensory domain appear at Week 6 and commence synaptogenesis in Week 9 (Pechriggl et al., 2015). The ganglion neurons differentiate to form two distinct populations on the basis of their location within the ganglia and soma size, central Type I large and peripheral Type II small cells. Note that more Type II ganglion cells have been identified in neonates, within the middle and api-

FIGURE 1-2. Stage 13 embryo (Week 5) showing otocyst that will form the inner ear. **A.** Ventrolateral view of the whole embryo with 5-mm scale bar. At this stage of development, no middle or external ear structures are apparent and will be derived later from pharyngeal arches 1 and 2 (labeled). **B.** The gray bar through the head indicates the plane of cross section, which is a cross section of the head showing the size and position of the otic vesicles. At this stage of development, the vesicles lie within the head mesenchyme behind pharyngeal Arch 1 and 2 and in close apposition to the developing hindbrain. Note the close position of the otic vesicle to the rhombomeres, hindbrain folds that represent the initial segmentation of the hindbrain. Also shown are developing cranial ganglia and blood vessel lying adjacent to the otic vesicles. The wall of the otic vesicle at this stage is a simple epithelium.
cal turns, than in adults (Chiong, Burgess, & Nadol, 1993). This suggests an ongoing postnatal differentiation within the ganglion. An earlier study identified the associated glial cells do not myelinate the ganglion fibers, either in the fetus or neonate, and only thin myelination was observed in the elderly (Arnold, 1987). A more recent study identified in the fetal period cochlear, Schwann cell myelination (24 weeks) distally, and a later glial myelination (26 weeks) proximally (Moore & Linthicum, 2001).

In the fourth week, the endolymphatic sac extends initially from the otic vesicle as a small diverticulum, with the main otic body forming the primordia of the utricle and the saccule (Figure 1–3). Regional differentiation of the utricle and saccule is regulated by the transcription factors Otx1 (Beisel, Wang-Lundberg, Maklad, & Fritzsch, 2005) and Pax5 (Kwak et al., 2006), both members of the homeobox gene family. The endolymphatic sac’s mature function is both secretory and absorptive. The endolymphatic sac begins initially as an extending “single-lumen pouchlike structure,” which in humans goes on to develop through the fetal period and into the first postnatal year into a series of tubular structures (Bagger-Sjoback, 1991; Ng, 2000; Ng & Linthicum, 1998). This mature tubular structure is not seen in other species (Ng & Linthicum, 1998).

The adult endolymphatic sac is filled with endolymphatic fluid with a unique composition of high potassium and low sodium ions (Grunder, Muller, & Ruppersberg, 2001). Both the vestibular and cochlear epithelial cells secrete endolymphatic fluid. It is not known in humans at what stage of development this ionic status is achieved. In the rat, adult sodium levels are seen in the first week after birth, while both potassium

![Figure 1–3. Stage 19 embryo (Week 7) showing the ear development features. A. Lateral view of the whole embryo with 5-mm scale bar. Note the pharyngeal arches have differentiated and are no longer visible on the surface. The external ear (auricle) has formed from hillocks on pharyngeal arch 1 and arch 2. Note the relative position of the ear just above the neck and at the level of the lower jaw. The external auditory meatus is enlarged and ends at a meatal plug. B. Historic image (Thyng, 1914) cutaway view of same stage embryo showing the position and appearance of the inner ear relative to the developing brain and other cranial ganglia. C. The relative size and shape of the inner ear labyrinth at Weeks 6, 7, and 8. By the end of the embryonic period (Week 8), the inner ear labyrinth approximates the shape of the adult structure.]