Contents

Foreword by James W. Hall III, PhD and Virginia Ramachandran, Aud, Series Editors
ix
Preface
xi

1 Rationale for Objective Hearing Assessment
1
A Word about Terminology
1
Important Terms and Concepts
1
Detection versus Diagnosis
3
Clinical Limitations of Behavioral Audiometry
4
Cross-Check Principle Revisited
5

2 Aural Immittance Measurements
7
Introduction
7
Terminology
7
Historical Perspective
7
Current Status of Immittance Measures
9
Functional Anatomy
10
Introduction
10
External Auditory Canal
10
Middle Ear
11
Cochlear and Retrocochlear Pathways
12
Identification (Screening) of Auditory Dysfunction
13
Tympanometry
13
Wideband Reflectance
18
Acoustic Reflex Thresholds for Broadband Noise Signals
19
Diagnosis of Auditory Dysfunction
21
Introduction
21
Tympanometry Findings in Auditory Dysfunction
22
Toynbee and Valsalva’s Techniques
22
Sensitivity Prediction by the Acoustic Reflex (SPAR)
23
Other Acoustic Reflex Predictive Techniques
23
Contraindications to Acoustic Reflex Measurement
24
Diagnosis Value of Patterns of Aural Immittance Findings
24
Case A: Vertical Acoustic Reflex Pattern (Mild Conductive)
25
Case B: “Inverted L” Acoustic Reflex Pattern (Moderate Conductive)
28
Case C: Vertical Acoustic Reflex Pattern (Facial Nerve Disorder)
28
Case D: Diagonal Acoustic Reflex Pattern (Sensory)
28
Case E: Diagonal Acoustic Reflex Pattern (Neural)
28
Case F: Inverted L Acoustic Reflex Pattern (Neural)
33
Case G: Horizontal Acoustic Reflex Pattern (Brainstem)
33
Case H: “Uni-Box” Acoustic Reflex Pattern (Brainstem)
33
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Otoacoustic Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Page 37</td>
</tr>
<tr>
<td>Screening for Hearing Loss</td>
<td>Page 38</td>
</tr>
<tr>
<td>OAE Test Protocols for Newborn Hearing Screening</td>
<td>Page 38</td>
</tr>
<tr>
<td>School-Age and Preschool Screening</td>
<td>Page 44</td>
</tr>
<tr>
<td>Estimation of Hearing Loss</td>
<td>Page 47</td>
</tr>
<tr>
<td>Estimating Hearing Loss with OAEs</td>
<td>Page 50</td>
</tr>
<tr>
<td>Differences between OAE and Audiogram Findings</td>
<td>Page 54</td>
</tr>
<tr>
<td>Clinical Considerations and Concerns</td>
<td>Page 55</td>
</tr>
<tr>
<td>Subject (Nonpathological) Factors</td>
<td>Page 55</td>
</tr>
<tr>
<td>Pathologic Factors</td>
<td>Page 57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Electrocochleography (ECochG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Page 59</td>
</tr>
<tr>
<td>Test Protocol</td>
<td>Page 59</td>
</tr>
<tr>
<td>Estimation of Hearing Thresholds</td>
<td>Page 61</td>
</tr>
<tr>
<td>Diagnostic Applications of ECochG</td>
<td>Page 62</td>
</tr>
<tr>
<td>Enhancement of ABR</td>
<td>Page 62</td>
</tr>
<tr>
<td>Auditory Neuropathy</td>
<td>Page 64</td>
</tr>
<tr>
<td>Clinical Considerations and Constraints</td>
<td>Page 66</td>
</tr>
<tr>
<td>Subject Factors</td>
<td>Page 66</td>
</tr>
<tr>
<td>Pathologic Factors</td>
<td>Page 66</td>
</tr>
<tr>
<td>Concluding Comment</td>
<td>Page 66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Auditory Brainstem Response (ABR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening for Identification of Hearing Loss</td>
<td>Page 67</td>
</tr>
<tr>
<td>Automated ABR</td>
<td>Page 67</td>
</tr>
<tr>
<td>Estimation of Hearing Thresholds</td>
<td>Page 69</td>
</tr>
<tr>
<td>Air Conduction Click-Elicited ABR Measurement</td>
<td>Page 69</td>
</tr>
<tr>
<td>Bone Conduction Click-Elicited ABR Measurement</td>
<td>Page 78</td>
</tr>
<tr>
<td>Frequency-Specific (Tone Burst) ABR Measurement</td>
<td>Page 82</td>
</tr>
<tr>
<td>Analysis and Interpretation</td>
<td>Page 86</td>
</tr>
<tr>
<td>Clinical Considerations and Constraints</td>
<td>Page 96</td>
</tr>
<tr>
<td>Nonpathologic Factors</td>
<td>Page 96</td>
</tr>
<tr>
<td>Pathologic Factors</td>
<td>Page 99</td>
</tr>
<tr>
<td>Noise, Sedation, and Anesthesia</td>
<td>Page 99</td>
</tr>
<tr>
<td>ABR Measurement without Sedation or Anesthesia</td>
<td>Page 101</td>
</tr>
<tr>
<td>Plotting Electrophysiologically Estimated Auditory Thresholds</td>
<td>Page 102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Auditory Steady-State Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Perspective on the Auditory Steady-State Response</td>
<td>Page 105</td>
</tr>
<tr>
<td>Defining the Auditory Steady-State Response</td>
<td>Page 106</td>
</tr>
<tr>
<td>Introduction</td>
<td>Page 106</td>
</tr>
<tr>
<td>Response Generation</td>
<td>Page 106</td>
</tr>
</tbody>
</table>
Contents

Neural Generators .. 108
Stimulus Characteristics .. 110
 Type of Stimuli .. 110
 Presentation of Stimuli 114
Response Acquisition ... 114
 Improving the Signal-to-Noise Ratio 115
Response Analysis ... 116
 Spectral Analysis Approach 116
 Phase Analysis Approach 117
 Considerations in Response Detection 118
Subject Factors .. 119
 Age .. 119
 Sleep .. 121
 Anesthesia .. 121
 Attention ... 121
 Internal Noise .. 122
Objective Hearing Assessment with the Auditory Steady-State Response 122
 Hearing Screening .. 122
 Estimating Behavioral Threshold 123
 Threshold Accuracy .. 124
 Auditory Neuropathy .. 126
 Artifactual Responses .. 127
 Bone Conduction Auditory Steady-State Responses 128
 Sound-Field ASSR ... 130
Clinical Protocols and Equipment 131
 Future Applications of the Auditory Steady-State Response 133

7 Recommendations for Objective Identification and Diagnosis of Hearing Loss 135
 Introduction ... 135
 Recommendations for Detection 135
 Newborns and Infants 135
 Combined OAE/ABR Infant Hearing Screening 137
 Preschool and School-Age Children 139
 Recommendations for Diagnosis 141
 Infants Younger than 6 Months 141
 Infants 6 to 36 Months 143
 Children and Adults .. 144
 Test Battery Approach ... 144
 New Directions for Research 145
 Detection of Hearing Loss 145
 Diagnosis of Hearing Loss 146

8 Case Reports Illustrating Application of Objective Measures of Auditory Function 149
 Introduction ... 149
 Case: Frequency-Specific ABR for an Infant under Melatonin-Induced Sleep 149
Objective Assessment of Hearing Loss

Case: ABR Evaluation of an Awake Child 154
Case: Auditory Neuropathy and Conductive Hearing Loss 157
Case: Bilateral Conductive Loss 159
Case: Unilateral Sensory Hearing Loss 161
Case: Bilateral Profound Sensory Hearing Loss 168

References 171
Index 181
Foreword

How can we make learning in audiology more effective? This is the question that we began with in designing the Core Clinical Concepts in Audiology series. Our answer is revealed in the construction of the books of the series in which we seek to provide palatable and useful information to students and practitioners to develop and refine clinical skills for audiology practice.

By and large, texts available for our field provide exhaustive examination of broad topic areas. Although these texts are useful and necessary for advanced scholarship, we currently lack pedagogic materials that focus on basic clinical methods and knowledge. The books in this series are designed for teaching and learning.

These books are written for the student. The scope of practice for audiology has expanded dramatically since the inception of our field. Today’s students must acquire a tremendous arsenal of clinical skills and knowledge in a very short period of time. The books of the CCC series are meant to be clear and comprehensible to students, focusing on the content necessary to achieve knowledge and skills for clinical practice. Furthermore, the books are designed to be economical, both financially and in time spent in learning.

These books are written for the clinician. With expansion of the scope of audiology practice, currently practicing clinicians must acquire new skill sets while continuing to serve their patients. Not a small feat. Hard-working practitioners deserve educational materials compatible with the real-world demands of fast-paced and time-limited clinical practice. In response to these needs, the books of the CCC series are designed to be concise. The succinct construction of the series is meant to allow readers to efficiently acquire the essential concepts and skills described in the books.

These books are written for the instructor. Most instructors of audiology courses are familiar with the frustration of searching for materials that cover the topics which reflect the learning outcomes of their courses. Especially lacking are materials designed to promote clinical learning. The books of the CCC series are designed to focus on specific areas of clinical practice. They are targeted toward the learning outcomes commonly found in audiology curricula. Due to the economical nature of the books, instructors can feel comfortable in creatively combining different Core Clinical Concepts in Audiology books to support the unique and diverse learning demands of specific courses.

These books are written for the user. The needs of the reader are our primary concerns. These books are written to help readers learn to be outstanding clinical audiologists. To be sure, these are lofty goals. The authors of the CCC series books have put forth their best effort to accomplish these goals.

Objective Assessment of Hearing by James W. Hall III and DeWet Swanepoel was written to provide a practical guide to the use of objective measures for prediction of hearing sensitivity. Some of the measures described in the text have been around for a long time. Electrocochleography (ECochG), for example, predates the beginnings of audiology. Other objective procedures, including acoustic immittance measures, have for many years proven their worth in clinical audiology. Yet, we’ve witnessed in recent years innovative applications for these time-tested procedures, such as high-frequency probe tone tympanometry in neonates or acoustic reflexes in the diagnosis of auditory neuropathy spectrum disorder. Several measures included in the book are relatively new additions to the clinical test battery, among them otoacoustic emissions (OAEs) and the auditory steady-state response (ASSR).

Even seasoned clinicians will appreciate the up-to-date and evidence-based recommendations for practice included in the text. The book was written by two audiologists who indeed “clinically practice what they preach.” Newer clinicians and students will appreciate the simply stated broad
Objective Assessment of Hearing Loss

perspective on application of objective tests, and
the common sense tips on how to strategically
apply objective tests for quantifying hearing abil-
ity. As with the other books of the CCC series, the
organization and construction of the book works
to provide important and necessary information
in a manner consistent with the needs of readers.

James W. Hall III, PhD
Virginia Ramachandran, AuD
Series Editors
Preface

The Core Clinical Concepts Series is designed to present a series of textbooks, each of which addresses a topic in an in-depth and comprehensive manner. *Objective Assessment of Hearing* is the first offering within the Electrophysiology component of the CCC series. In this text, the use of objective audiologic measures available to audiologists is explored in an effort to expand daily application of the measures in the timely and accurate measurement of hearing in infants, children, and adults.

Chapter 1 provides the context for the use of objective measures in audiometric assessment. Chapter 2 is an up-to-date review the varied clinical applications of aural immittance measures, including tympanometry and acoustic reflexes. The inclusion of case studies in this chapter demonstrates the valuable contribution of immittance measures in interpretation of patterns of audiometric findings. In Chapter 3, another electroacoustic procedure—otoacoustic emissions—is explored concisely, with specific reference to the rather unique applications of OAEs in screening for and diagnosis of auditory dysfunction. Chapter 4 introduces the reader to electrophysiologic measures by describing the invaluable use of electrocochleography in diagnostic audiologic assessment of infants and young children. In Chapter 5, the varied roles of the auditory brainstem response (ABR) are reviewed including applications in hearing screening, frequency-specific estimation of hearing sensitivity, and neurodiagnosis. Bone-conduction and tone burst ABR protocols are outlined, as well as practical strategies and methods for analysis of findings. The auditory steady-state response is covered in Chapter 6, with a simple but complete description of how the ASSR can contribute importantly to estimation of hearing sensitivity. Chapter 7 reviews current evidence-based recommendations for use of objective measures for screening, identification, and quantification and of hearing loss. The final chapter (8) consists of case studies illustrating the multiple clinical uses and advantages of objective measures for diagnostic auditory assessment of infants and young children.