Contents

Foreword by Teresa A. Zvolan
Preface
Acknowledgments
Contributors

1 Basic Components and Operation of a Cochlear Implant

Jace Wolfe, Erin C. Schafer, and Sara Neumann

- Basic Operation of Cochlear Implants
- Basic Components of Current Cochlear Implant Systems
- Advanced Bionics Corporation
 - Naída CI Q70 Sound Processor
 - Neptune Sound Processor
 - Harmony Sound Processor
 - HiRes 90K Advantage Implant
- Cochlear Corporation
 - Nucleus 6 Sound Processor
 - Nucleus Freedom Internal Device
 - CI422 Implant
 - Nucleus Hybrid Cochlear Implant
 - CI512 Implant
- MED-EL Corporation
 - OPUS 2 Sound Processor
 - RONDO
 - CONCERT Internal Device
 - SONATA TI100 Internal Device
 - PULSAR CI100 Internal Device
 - MED-EL Electrode Array Options
 - MED-EL SYNCHRONY Cochlear Implant System
- Key Concepts

2 Basic Terminology of Cochlear Implant Programming

- Parameters Affecting Signal Coding in the Intensity Domain
 - Stimulation Levels
 - Threshold of Stimulation
 - Upper-Stimulation Levels
 - Current Amplitude and Pulse Width
 - Mapping Acoustical Inputs Into the Electrical Dynamic Range
- Parameters Affecting Signal Coding in the Frequency Domain
 - Electrode Contact Versus Channel
 - Virtual Electrodes (Current Steering)
 - Frequency Allocation
Programming Cochlear Implants

Parameters Affecting Signal Coding in the Time Domain
- Stimulation Rate

Basic Cochlear Implant Terminology
- Electrode Coupling Strategy/Stimulation Mode
- Sequential Versus Simultaneous Stimulation
- Interpolation
- Sweeping
- Loudness Balancing
- Radio Frequency (RF)
- Telemetry
- Impedance
- Voltage Compliance
- Mixing Ratio

Basic Cochlear Implant Signal Coding Strategies
- Continuous Interleaved Sampling (CIS)
- HiResolution (HiRes) Sound Processing
- n-of-m Strategies
- Spectral Peak (SPEAK)
- Advanced Combination Encoder (ACE)
- Fine Structure Processing (FSP)
- Simultaneous Analog Stimulation (SAS)

Key Concepts

Basic Principles of Programming

3
Preactivation Procedures
- Realistic Expectations Prior to Activation
- Reviewing Logistics of Cochlear Implantation
- Familiarity with Cochlear Implant Hardware
- Setting the Stage

Programming After Implantation
- Physical Evaluation
- Selecting a Signal Coding Strategy
- Streamlined Versus Comprehensive Programming
- Measuring Stimulation Levels
- Adjustments to Special Parameters

Key Concepts

Programming Advanced Bionics Implants

4
Advanced Bionics CPI-3 Programming Interface
Programming Advanced Bionics Sound Processors
- Programming Software
- Patient Information Entry
- Connecting the Sound Processor and Conducting the Electrode
 - Impedance Measurement
- Creating a Program in SoundWave 2.2 Software
- Selecting a Sound Processing Strategy
- Setting Stimulation Levels and Stimulation Rate
- Additional Programming Parameters
- Loading Programs Into Advanced Bionics Sound Processors
5 Programming Cochlear Devices 167
Programming the Nucleus 6 System 167
Measure Impedances 170
Open or Create MAP 173
Setting Stimulation Levels 175
Write to Processor 194
Programming Previous Generations of Nucleus Implants 212
Key Concepts 213

6 Programming MED-EL Cochlear Implants 215
Jace Wolfe, Erin C. Schafer, and Sara Neumann
Patient Information Entry 215
Connecting the Sound Processor and Conducting the Electrode Impedance Measurement 217
Creating a Program in MAESTRO 4.0 220
Selecting a Signal Coding Strategy 220
Setting Stimulation Levels 222
Additional Programming Parameters 227
Finalizing Programming 231
MED-EL Specific Troubleshooting 232
Additional Considerations 232
Auditory Response Telemetry (ART) 232
Key Concepts 235

7 Clinical Considerations: Putting All of the Pieces Together 237
Collaboration with the Cochlear Implant Surgeon/Medical Evaluation 237
Programming Schedule 238
Two-Day Initial Activation Sessions 238
One-Week Postactivation Appointment 244
One-Month Postactivation Programming Session 247
Remainder of Programming Schedule 248
The Role of Electrically Evoked Potentials in Programming 249
Additional Habilitative/Rehabilitative Considerations 258
Considerations for Bilateral Cochlear Implantation 260
Key Concepts 262

8 Patient Complaints and Complications 263
Managing Recipients Who Experience Disappointing Outcomes 263
External Hardware 263
Determine Wear Schedule and Facilitate an Auditory Lifestyle 265
Evaluate the Appropriateness of the Cochlear Implant Program 266
Assessment of Internal Hardware 266
Identifying “Red Flags” 266
Factors Influencing Cochlear Implant Outcomes 267
Programming Adjustments for the Most Common Complaints and Complications 270
Key Concepts 270

9 **Hearing Assistance Technology (HAT) and Cochlear Implants** 275
Basic Description of Personal Systems 276
Optimal Systems for Use with a Cochlear Implant 276
Description and Programming for Personal HAT and Cochlear Implants 276
- FM and Digital RF Transmitters 276
- FM, RF, and Induction Loop Receivers 279
- Programming Considerations for FM/RF Receivers and Sound Processors 281
HAT to Improve Telephone Conversations 288
- Telecoils 288
- Telecoil Accessories 289
- Streaming Devices 289
Summary of HAT for Cochlear Implants 290
Key Concepts 290

10 **Programming Recipients Using Electric-Acoustic Stimulation** 291
Introduction 291
Electrode Array Location and Place of Stimulation 293
Current Devices 294
- Cochlear Hybrid Implant Technology 294
- MED-EL EAS Technology 297
Performance with Hybrid or Minimally Invasive Cochlear Implants 302
Selecting Electrode Arrays for Hearing Preservation 304
Optimizing the Fitting 306
- Frequency Allocation of Acoustic and Electric Stimulation 306
- Prescriptive Strategy for Acoustic Hearing Aid 311
Clinical Protocol for Programming EAS Devices 311
The Future of EAS 315
Key Concepts 316

11 **Case Studies** 317
Jace Wolfe, Erin C. Schafer, and Mila Morais
Case Study 1: Basic Example of Creating Programs for an Adult Recipient 317
Take-Home Points 319
Case Study 2: Establishing a Program for an Adult Via Objective Measures 320
Take-Home Points 321
Case Study 3: Creating Programs for a 1-Year-Old Implant Recipient 321
Take-Home Points 322
Case Study 4: Creating a Program for a Young Recipient Using the Advanced 323
Bionics HiRes 90K Advantage Cochlear Implant 325
Take-Home Points 325
Case Study 5: Inadequate Stimulation Levels and Narrow Electrical Dynamic Range 326
Take-Home Points 327
Case Study 6: Using Objective Measures to Set Upper-Stimulation Levels 328
Take-Home Points 329
Case Study 7: Creating a Program for a Recipient with Multiple Disabilities
Take-Home Points

Case Study 8: Use of Objective Measures as a Guide to Avoid Overstimulation
Take-Home Points

Case Study 9: Addressing Speech-Recognition Difficulties That May Be Associated with Excessive Stimulation
Take-Home Points

Case Study 10: Utilizing Behavioral Information to Create a Cochlear Implant Program and Address Recipient Difficulties
Take-Home Points

Electrode Impedance Case Studies

Case Study 11: Sawtooth Electrode Impedance Pattern Managed with Programming
Take-Home Points

Case Study 12: Flat Low Common Ground Impedances with Performance Decrease
Take-Home Points

Case Study 13: Physiologic-Related Electrode Impedance Changes
Take-Home Points

Case Study 14: Impedance Changes Secondary to Excessive Stimulation
Take-Home Points

Case Study 15: Programming for a Teenage Recipient Who Had Significant Residual Hearing After Implantation

Key Concepts

References

Index
Programming Cochlear Implants (2nd edition) by Jace Wolfe and Erin Schafer is the latest addition to the Cochlear Implant Component of the Core Clinical Concepts in Audiology series of books. Similar to the first edition, this book provides detailed and comprehensive information about programming cochlear implants that cannot be found in other books. They begin by providing an overview of basic cochlear implant components, including updated information regarding newly introduced electrode arrays and speech processor components. A separate chapter is devoted to each of the three currently available cochlear implant systems (Chapters 4, 5, 6), where they review programming equipment (i.e., programming interface tools), programming software, sound processing features, and more. They provide the reader with step-by-step overviews of various programming appointments, describe uses for various objective measures, and discuss rehabilitative activities that can be used with patients to enhance their performance.

In the final chapters, the authors provide an excellent update regarding hearing assistive technology and cochlear implants (Chapter 9). They describe various types of assistive technologies that can be utilized with the speech processor to enhance performance in difficult listening situations, including a comprehensive description of FM devices, speech processor telecoils, and recently introduced wireless accessories.

Both new and experienced clinicians will treasure this book and will refer to it regularly. We are both pleased and proud that Drs. Wolfe and Shafer took time out of their busy schedules to provide us with this valuable update to their original work.

—Teresa A. Zwolan, PhD
Series Editor
Cochlear Implant Series
The Nucleus 6 sound processor, the most recent release from Cochlear, possesses several new features relative to its immediate predecessor, the Nucleus 5 sound processor. Features include an option to provide electroacoustic stimulation, scene analysis with automatic adaptive directionality (SCAN), digital noise reduction (SNR-NR), wind noise reduction, datalogging, and compatibility with a portfolio of proprietary wireless hearing assistance technologies (HAT). The various components of the Nucleus 6 cochlear implant system are described in Chapter 1.

The hardware used to connect the processor to the computer (i.e., the programming pod and cable) is shown in Figure 5–1. Briefly, a programming interface, known as a pod, is connected to the

FIGURE 5–1. Cochlear programming Pod with cables for the Nucleus 5 and 6 (A) and Freedom sound processors (B).
sound processor with a specialized programming cable, and the pod is connected to the programming computer with a USB cable. The same pod and programming cable (Figure 5–1A) are used to connect the Nucleus 6 and Nucleus 5 sound processors to the programming computer, whereas the same pod but a different programming cable (Figure 5–1B) is used to connect the Freedom sound processor to the programming computer.

Prior to creating a program, the clinician must create a file for the recipient and identify the implant(s) the recipient has received. In the Custom Sound 4.1 software, this is accomplished by selecting the “Create” function on the right-hand side of the patient selection “start-up” page (Figure 5–2). The recipient’s first and last names (Figure 5–3), the type of implant the recipient has received, and the ear that has been implanted must

FIGURE 5–2. Create a file for the recipient by selecting the “Create” function.
Note. Provided courtesy of Cochlear™ Ltd.

FIGURE 5–3. In the “Recipient Details” menu, enter the recipient’s first and last names as well as other demographic information; select the “Add” button when complete. Note. Provided courtesy of Cochlear™ Ltd.
be entered into the “Recipient Details” menu. Additional demographic information may also be entered as the clinician desires. The clinician must select the “Add” button in the “Recipient Details” menu to enter the implant the recipient has received (see Figure 5–3). A pop-up menu is provided, and from this menu, the clinician must enter the recipient implant model(s) and the ear(s) that was implanted (Figure 5–4).

In the Cochlear Custom Sound 4.1 software, the basic programming process is essentially divided into four categories (Figure 5–5): (1) Measure Impedances, (2) Open or Create MAP, (3) Set Levels, and (4) Write to Processor. The clinician may choose to incorporate other steps into the process as needed. These additional steps include: Perform Neural Response Telemetry (NRT), Bilateral Balance, and Finalize Programming. The

FIGURE 5–4. Pop-up menu for selection of the recipient implant model(s) and the ear(s) that was implanted. Note. Provided courtesy of Cochlear™ Ltd.

FIGURE 5–5. Each programming task is shown in a box on the left side of the screen. Note. Provided courtesy of Cochlear™ Ltd.
The following description of programming Cochlear devices will be organized to correspond with the aforementioned categories.

Measure Impedances

The first step involved in programming in Custom Sound 4.1 is to measure electrode impedance in four different electrode coupling modes. Electrode impedances are measured by simply selecting the “Measure” button within the “Measure Impedance” platform (Figure 5–6). The results of the measurement are promptly displayed in the illustration of the electrode array and reference electrodes by depicting impedances falling within the normal range in a green color and any abnormal findings in a red color (see Figure 5–6). The clinician should select the “Details” button to review electrode impedances in graphical and tabular form (Figure 5–7).

In each electrode coupling mode, a low-level electrical current (100 CL with a pulse width of 25 usec), which is inaudible for most but not all recipients, is delivered sequentially to each intracochlear electrode contact. The impedance (in kOhms) is measured across the entire circuit as the current travels from the current source to the intracochlear electrode contact and finally to one or more reference electrodes. Impedance is first measured in the common ground mode where the low-level current is delivered sequentially to each intracochlear electrode contact. Each of the remaining intracochlear contacts simultaneously serves as the return path. Because the common ground mode electrically couples each intracochlear electrode contact to the remaining intracochlear electrode contacts within the array, it is the most sensitive mode for detecting shorted electrode contacts. As a result, common ground is the preferred electrode coupling mode to detect anomalous intracochlear electrodes.

The Monopolar 1 and Monopolar 2 coupling modes measure electrode impedance by sequentially delivering the low-level current to each intracochlear electrode contact and by evaluating the impedance in the circuit from the current source to each intracochlear electrode and extracochlear reference electrode. Measuring electrode impedance in the Monopolar 1 and Monopolar 2 modes allows the clinician to identify the status of the extracochlear reference electrodes (located on the end of the nonstimulating electrode lead and the implant case, respectively).

FIGURE 5–6. Measuring impedances. *Note.* Electrodes 3, 4, and 12 are darkly shaded in this figure (abnormal impedance), whereas remaining electrodes are lightly shaded in this figure (normal impedance). Provided courtesy of Cochlear™ Ltd.
In the fourth mode, Monopolar 1+2, each intracochlear electrode is referenced to both the remote and case reference electrodes. In other words, the measure is completed by evaluating the impedance that exists in the circuit from the current source to each intracochlear electrode contact and finally to the reference, which is comprised of MP1 and MP2 which are electrically coupled to one another. The Monopolar 1+2 (MP1+2) mode is the default mode used for stimulation in the primary signal coding strategy used with Cochlear devices, the Advanced Combination Encoder (ACE) signal coding strategy (also in the Continuous Interleaved Sampling [CIS] and Spectral-Peak [SPEAK] strategies). As a result, impedance measured in the MP1+2 mode closely reflects the typical impedance present during stimulation when the implant is used on a daily basis.

According to the manufacturer, electrode impedances below 565 ohms are abnormally low and are designated as “short” circuits, whereas electrode impedances greater than 30 kohms for half-band electrode contacts (e.g., Nucleus Freedom, CI422, CI512, Hybrid) are abnormally high and are referred to as “open” circuits. It should be noted that the open circuit limit for the electrode array with full-band electrode contacts (e.g., Nucleus Straight Array and the Nucleus Double Array) is 20 kOhms. Electrodes with abnormal impedances are typically “flagged” and deactivated for programming and subsequent impedance assessments. In the “Measure Impedance” module, “flagged” electrodes are depicted in yellow for all subsequent impedance measurements. Flagged electrodes are also “grayed out” (disabled) in the programming/“Set Levels” module of Custom Sound.

At initial activation, impedance is frequently high but will generally decrease with routine implant use. Therefore, the clinician should reassess the impedance of electrodes with abnormally high electrode impedance to determine whether impedance decreases to normal levels after stimulation of the electrodes. However, shorted electrodes will typically always remain as shorted electrodes and should be permanently disabled once they are identified. It should be reiterated that shorted electrodes are identified not only by their abnormally low impedance (i.e., less than 565 ohms) but also because the common ground mode allows for detection of two or more intracochlear electrodes that are electrically connected to one another.

For situations in which an electrode initially had abnormal impedance prior to stimulation and was subsequently flagged, the clinician may...